metadata
base_model: sentence-transformers/LaBSE
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:23999
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Who led thee through that great and terrible wilderness , wherein were
fiery serpents , and scorpions , and drought , where there was no water ;
who brought thee forth water out of the rock of flint ;
sentences:
- bad u ai ïa ki ha u Aaron bad ki khun shynrang jong u .
- >-
U la ïalam ïa phi lyngba ka ri shyiap kaba ïar bad kaba ishyrkhei eh ,
ha kaba la don ki bseiñ kiba don bih bad ki ñianglartham . Ha kata ka
ri kaba tyrkhong bad ka bym don um , u la pynmih um na u mawsiang na ka
bynta jong phi .
- >-
Ki paidbah na ki jait ba na shatei ki phah khot ïa u , bad nangta ma ki
baroh ki ïaleit lang sha u Rehoboam bad ki ong ha u ,
- source_sentence: >-
And , behold , Boaz came from Beth–lehem , and said unto the reapers ,
The Lord be with you . And they answered him , The Lord bless thee .
sentences:
- >-
Ko ki briew bymïaineh , to wan noh ; phi long ki jong nga . Ngan shim
iwei na phi na kawei kawei ka shnong bad ar ngut na kawei kawei ka kur ,
bad ngan wallam pat ïa phi sha u lum Seïon .
- >-
Hadien katto katne por u Boas da lade hi u wan poi na Bethlehem bad u ai
khublei ïa ki nongtrei . To U Trai un long ryngkat bad phi ! u ong
. U Trai u kyrkhu ïa phi ! ki jubab .
- >-
U Trai u la ong ha u , Khreh bad leit sha ‘ Ka Lynti Ba-beit ,’ bad ha
ka ïing jong u Judas kylli ïa u briew na Tarsos uba kyrteng u Saul .
- source_sentence: >-
Jehovah used the prehuman Jesus as his “master worker” in creating all
other things in heaven and on earth .
sentences:
- >-
Shuwa ba un wan long briew U Jehobah u la pyndonkam ïa u Jisu kum u
“rangbah nongtrei” ha kaba thaw ïa kiei kiei baroh kiba don ha bneng bad
ha khyndew .
- >-
Shisien la don u briew uba la leit ban bet symbai . Katba u dang bet ïa
u symbai , katto katne na u , ki la hap ha shi lynter ka lynti ïaid kjat
, ha kaba ki la shah ïuh , bad ki sim ki la bam lut .
- >-
Ngan ïathuh ïa ka shatei ban shah ïa ki ban leit bad ïa ka shathie ban
ym bat noh ïa ki . Ai ba ki briew jong nga ki wan phai na ki ri bajngai
, na man la ki bynta baroh jong ka pyrthei .
- source_sentence: >-
The like figure whereunto even baptism doth also now save us ( not the
putting away of the filth of the flesh , but the answer of a good
conscience toward God , ) by the resurrection of Jesus Christ :
sentences:
- >-
kaba long ka dak kaba kdew sha ka jingpynbaptis , kaba pyllait im ïa phi
mynta . Kam dei ka jingsait noh ïa ka jakhlia na ka met , hynrei ka
jingkular ba la pynlong sha U Blei na ka jingïatiplem babha . Ka pynim
ïa phi da ka jingmihpat jong U Jisu Khrist ,
- >-
Ki briew kiba sniew kin ïoh ïa kaei kaba ki dei ban ïoh . Ki briew kiba
bha kin ïoh bainong na ka bynta ki kam jong ki .
- >-
Nangta nga la ïohi ïa ka bneng bathymmai bad ïa ka pyrthei bathymmai .
Ka bneng banyngkong bad ka pyrthei banyngkong ki la jah noh , bad ka
duriaw kam don shuh .
- source_sentence: >-
On that day they read in the book of Moses in the audience of the people
; and therein was found written , that the Ammonite and the Moabite should
not come into the congregation of God for ever ;
sentences:
- >-
U Elisha u la ïap bad la tep ïa u . Man la ka snem ki kynhun jong ki
Moab ki ju wan tur thma ïa ka ri Israel .
- >-
Katba dang pule jam ïa ka Hukum u Moses ha u paidbah , ki poi ha ka
bynta kaba ong ba ym dei ban shah ïa u nong Amon ne u nong Moab ban
ïasnohlang bad ki briew jong U Blei .
- >-
U angel u la jubab , U Mynsiem Bakhuid un sa wan ha pha , bad ka bor
jong U Blei kan shong halor jong pha . Na kane ka daw , ïa i khunlung
bakhuid yn khot U Khun U Blei .
SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ABHIiiii1/LaBSE-Fine-Tuned-EN-KHA")
# Run inference
sentences = [
'On that day they read in the book of Moses in the audience of the people ; and therein was found written , that the Ammonite and the Moabite should not come into the congregation of God for ever ;',
'Katba dang pule jam ïa ka Hukum u Moses ha u paidbah , ki poi ha ka bynta kaba ong ba ym dei ban shah ïa u nong Amon ne u nong Moab ban ïasnohlang bad ki briew jong U Blei .',
'U Elisha u la ïap bad la tep ïa u . Man la ka snem ki kynhun jong ki Moab ki ju wan tur thma ïa ka ri Israel .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 23,999 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 34.89 tokens
- max: 87 tokens
- min: 8 tokens
- mean: 51.51 tokens
- max: 127 tokens
- Samples:
sentence_0 sentence_1 And Moses went out from Pharaoh , and entreated the Lord .
U Moses u mihnoh na u Pharaoh , bad u kyrpad ïa U Trai ,
In the ninth year of Hoshea the king of Assyria took Samaria , and carried Israel away into Assyria , and placed them in Halah and in Habor by the river of Gozan , and in the cities of the Medes .
kaba long ka snem kaba khyndai jong ka jingsynshar u Hoshea , u patsha ka Assyria u kurup ïa ka Samaria , u rah ïa ki Israel sha Assyria kum ki koidi , bad pynsah katto katne ngut na ki ha ka nongbah Halah , katto katne pat hajan ka wah Habor ha ka distrik Gosan , bad katto katne ha ki nongbah jong ka Media .
And the king said unto Cushi , Is the young man Absalom safe ? And Cushi answered , The enemies of my lord the king , and all that rise against thee to do thee hurt , be as that young man is .
Hato u samla Absalom u dang im ? u syiem u kylli . U mraw u jubab , Ko Kynrad , nga sngew ba kaei kaba la jia ha u kan jin da la jia ha baroh ki nongshun jong ngi , bad ha baroh kiba ïaleh pyrshah ïa phi .
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.3333 | 500 | 0.542 |
0.6667 | 1000 | 0.135 |
1.0 | 1500 | 0.0926 |
1.3333 | 2000 | 0.0535 |
1.6667 | 2500 | 0.0226 |
2.0 | 3000 | 0.018 |
2.3333 | 3500 | 0.0124 |
2.6667 | 4000 | 0.0057 |
3.0 | 4500 | 0.0053 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.2
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}