|
--- |
|
base_model: sentence-transformers/LaBSE |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:23999 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Who led thee through that great and terrible wilderness , wherein |
|
were fiery serpents , and scorpions , and drought , where there was no water ; |
|
who brought thee forth water out of the rock of flint ; |
|
sentences: |
|
- bad u ai ïa ki ha u Aaron bad ki khun shynrang jong u . |
|
- U la ïalam ïa phi lyngba ka ri shyiap kaba ïar bad kaba ishyrkhei eh , ha kaba |
|
la don ki bseiñ kiba don bih bad ki ñianglartham . Ha kata ka ri kaba tyrkhong |
|
bad ka bym don um , u la pynmih um na u mawsiang na ka bynta jong phi . |
|
- Ki paidbah na ki jait ba na shatei ki phah khot ïa u , bad nangta ma ki baroh |
|
ki ïaleit lang sha u Rehoboam bad ki ong ha u , |
|
- source_sentence: And , behold , Boaz came from Beth–lehem , and said unto the reapers |
|
, The Lord be with you . And they answered him , The Lord bless thee . |
|
sentences: |
|
- Ko ki briew bymïaineh , to wan noh ; phi long ki jong nga . Ngan shim iwei na |
|
phi na kawei kawei ka shnong bad ar ngut na kawei kawei ka kur , bad ngan wallam |
|
pat ïa phi sha u lum Seïon . |
|
- Hadien katto katne por u Boas da lade hi u wan poi na Bethlehem bad u ai khublei |
|
ïa ki nongtrei . To U Trai un long ryngkat bad phi ! u ong . U Trai u kyrkhu |
|
ïa phi ! ki jubab . |
|
- U Trai u la ong ha u , Khreh bad leit sha ‘ Ka Lynti Ba-beit ,’ bad ha ka ïing |
|
jong u Judas kylli ïa u briew na Tarsos uba kyrteng u Saul . |
|
- source_sentence: Jehovah used the prehuman Jesus as his “master worker” in creating |
|
all other things in heaven and on earth . |
|
sentences: |
|
- Shuwa ba un wan long briew U Jehobah u la pyndonkam ïa u Jisu kum u “rangbah nongtrei” |
|
ha kaba thaw ïa kiei kiei baroh kiba don ha bneng bad ha khyndew . |
|
- Shisien la don u briew uba la leit ban bet symbai . Katba u dang bet ïa u symbai |
|
, katto katne na u , ki la hap ha shi lynter ka lynti ïaid kjat , ha kaba ki la |
|
shah ïuh , bad ki sim ki la bam lut . |
|
- Ngan ïathuh ïa ka shatei ban shah ïa ki ban leit bad ïa ka shathie ban ym bat |
|
noh ïa ki . Ai ba ki briew jong nga ki wan phai na ki ri bajngai , na man la ki |
|
bynta baroh jong ka pyrthei . |
|
- source_sentence: 'The like figure whereunto even baptism doth also now save us ( |
|
not the putting away of the filth of the flesh , but the answer of a good conscience |
|
toward God , ) by the resurrection of Jesus Christ :' |
|
sentences: |
|
- kaba long ka dak kaba kdew sha ka jingpynbaptis , kaba pyllait im ïa phi mynta |
|
. Kam dei ka jingsait noh ïa ka jakhlia na ka met , hynrei ka jingkular ba la |
|
pynlong sha U Blei na ka jingïatiplem babha . Ka pynim ïa phi da ka jingmihpat |
|
jong U Jisu Khrist , |
|
- Ki briew kiba sniew kin ïoh ïa kaei kaba ki dei ban ïoh . Ki briew kiba bha kin |
|
ïoh bainong na ka bynta ki kam jong ki . |
|
- Nangta nga la ïohi ïa ka bneng bathymmai bad ïa ka pyrthei bathymmai . Ka bneng |
|
banyngkong bad ka pyrthei banyngkong ki la jah noh , bad ka duriaw kam don shuh |
|
. |
|
- source_sentence: On that day they read in the book of Moses in the audience of the |
|
people ; and therein was found written , that the Ammonite and the Moabite should |
|
not come into the congregation of God for ever ; |
|
sentences: |
|
- U Elisha u la ïap bad la tep ïa u . Man la ka snem ki kynhun jong ki Moab ki ju |
|
wan tur thma ïa ka ri Israel . |
|
- Katba dang pule jam ïa ka Hukum u Moses ha u paidbah , ki poi ha ka bynta kaba |
|
ong ba ym dei ban shah ïa u nong Amon ne u nong Moab ban ïasnohlang bad ki briew |
|
jong U Blei . |
|
- U angel u la jubab , U Mynsiem Bakhuid un sa wan ha pha , bad ka bor jong U Blei |
|
kan shong halor jong pha . Na kane ka daw , ïa i khunlung bakhuid yn khot U Khun |
|
U Blei . |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/LaBSE |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(3): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("ABHIiiii1/LaBSE-Fine-Tuned-EN-KHA") |
|
# Run inference |
|
sentences = [ |
|
'On that day they read in the book of Moses in the audience of the people ; and therein was found written , that the Ammonite and the Moabite should not come into the congregation of God for ever ;', |
|
'Katba dang pule jam ïa ka Hukum u Moses ha u paidbah , ki poi ha ka bynta kaba ong ba ym dei ban shah ïa u nong Amon ne u nong Moab ban ïasnohlang bad ki briew jong U Blei .', |
|
'U Elisha u la ïap bad la tep ïa u . Man la ka snem ki kynhun jong ki Moab ki ju wan tur thma ïa ka ri Israel .', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 23,999 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 34.89 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 51.51 tokens</li><li>max: 127 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>And Moses went out from Pharaoh , and entreated the Lord .</code> | <code>U Moses u mihnoh na u Pharaoh , bad u kyrpad ïa U Trai ,</code> | |
|
| <code>In the ninth year of Hoshea the king of Assyria took Samaria , and carried Israel away into Assyria , and placed them in Halah and in Habor by the river of Gozan , and in the cities of the Medes .</code> | <code>kaba long ka snem kaba khyndai jong ka jingsynshar u Hoshea , u patsha ka Assyria u kurup ïa ka Samaria , u rah ïa ki Israel sha Assyria kum ki koidi , bad pynsah katto katne ngut na ki ha ka nongbah Halah , katto katne pat hajan ka wah Habor ha ka distrik Gosan , bad katto katne ha ki nongbah jong ka Media .</code> | |
|
| <code>And the king said unto Cushi , Is the young man Absalom safe ? And Cushi answered , The enemies of my lord the king , and all that rise against thee to do thee hurt , be as that young man is .</code> | <code>Hato u samla Absalom u dang im ? u syiem u kylli . U mraw u jubab , Ko Kynrad , nga sngew ba kaei kaba la jia ha u kan jin da la jia ha baroh ki nongshun jong ngi , bad ha baroh kiba ïaleh pyrshah ïa phi .</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | |
|
|:------:|:----:|:-------------:| |
|
| 0.3333 | 500 | 0.542 | |
|
| 0.6667 | 1000 | 0.135 | |
|
| 1.0 | 1500 | 0.0926 | |
|
| 1.3333 | 2000 | 0.0535 | |
|
| 1.6667 | 2500 | 0.0226 | |
|
| 2.0 | 3000 | 0.018 | |
|
| 2.3333 | 3500 | 0.0124 | |
|
| 2.6667 | 4000 | 0.0057 | |
|
| 3.0 | 4500 | 0.0053 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.3 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |