ElEmperador / README.md
AINovice2005's picture
Update README.md
1eaa66d verified
|
raw
history blame
1.82 kB
metadata
license: apache-2.0
datasets:
  - argilla/ultrafeedback-binarized-preferences-cleaned
language:
  - en
base_model:
  - mistralai/Mistral-7B-v0.1
library_name: transformers
tags:
  - transformers

Model Overview

  • 𝐌𝐨𝐝𝐞π₯ 𝐍𝐚𝐦𝐞:ElEmperador

image/png

Model Description:

ElEmperador is an ORPO-based finetune derived from the Mistral-7B-v0.1 base model.

Evals:

BLEU:0.209

Inference Script:

def generate_response(model_name, input_text, max_new_tokens=50):
    # Load the tokenizer and model from Hugging Face Hub
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Tokenize the input text
    input_ids = tokenizer(input_text, return_tensors='pt').input_ids
    
    # Generate a response using the model
    with torch.no_grad():
        generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
    
    # Decode the generated tokens into text
    generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    
    return generated_text

if __name__ == "__main__":
    # Set the model name from Hugging Face Hub
    model_name = "AINovice2005/ElEmperador" 
    input_text = "Hello, how are you?"

    # Generate and print the model's response
    output = generate_response(model_name, input_text)
    
    print(f"Input: {input_text}")
    print(f"Output: {output}")

Results

Firstly,ORPO is a viable RLHF algorithm to improve the performance of your models along with SFT finetuning.Secondly, it also helps in aligning the model’s outputs more closely with human preferences, leading to more user-friendly and acceptable results.