ElEmperador / README.md
AINovice2005's picture
Update README.md
1eaa66d verified
|
raw
history blame
1.82 kB
---
license: apache-2.0
datasets:
- argilla/ultrafeedback-binarized-preferences-cleaned
language:
- en
base_model:
- mistralai/Mistral-7B-v0.1
library_name: transformers
tags:
- transformers
---
# Model Overview
- 𝐌𝐨𝐝𝐞π₯ 𝐍𝐚𝐦𝐞:ElEmperador
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e8ea3892d9db9a93580fe3/gkDcpIxRCjBlmknN_jzWN.png)
## Model Description:
ElEmperador is an ORPO-based finetune derived from the Mistral-7B-v0.1 base model.
## Evals:
BLEU:0.209
## Inference Script:
```python
def generate_response(model_name, input_text, max_new_tokens=50):
# Load the tokenizer and model from Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Tokenize the input text
input_ids = tokenizer(input_text, return_tensors='pt').input_ids
# Generate a response using the model
with torch.no_grad():
generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
# Decode the generated tokens into text
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_text
if __name__ == "__main__":
# Set the model name from Hugging Face Hub
model_name = "AINovice2005/ElEmperador"
input_text = "Hello, how are you?"
# Generate and print the model's response
output = generate_response(model_name, input_text)
print(f"Input: {input_text}")
print(f"Output: {output}")
```
## Results
Firstly,ORPO is a viable RLHF algorithm to improve the performance of your models along with SFT finetuning.Secondly, it also helps in aligning the model’s outputs more closely with human preferences,
leading to more user-friendly and acceptable results.