|
--- |
|
library_name: peft |
|
license: mit |
|
language: |
|
- en |
|
tags: |
|
- transformers |
|
- biology |
|
- esm |
|
- esm2 |
|
- protein |
|
- protein language model |
|
--- |
|
# ESM-2 RNA Binding Site LoRA |
|
|
|
This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation ([LoRA](https://huggingface.co/docs/peft/task_guides/token-classification-lora)) of |
|
the [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) model for the (binary) token classification task of |
|
predicting RNA binding sites of proteins. The Github with the training script and conda env YAML can be |
|
[found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). You can also find a version of this model |
|
that was fine-tuned without LoRA [here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor). |
|
|
|
## Training procedure |
|
|
|
This is a Low Rank Adaptation (LoRA) of `esm2_t6_8M_UR50D`, |
|
trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites) |
|
using a `75/25` train/test split. It achieves an evaluation loss of `0.18801096081733704`. |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.4.0 |
|
|
|
## Using the Model |
|
|
|
To use, try running: |
|
```python |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
|
|
# Path to the saved LoRA model |
|
model_path = "AmelieSchreiber/esm2_t12_35M_LoRA_RNA_binding" |
|
# ESM2 base model |
|
base_model_path = "facebook/esm2_t12_35M_UR50D" |
|
|
|
# Load the model |
|
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) |
|
loaded_model = PeftModel.from_pretrained(base_model, model_path) |
|
|
|
# Ensure the model is in evaluation mode |
|
loaded_model.eval() |
|
|
|
# Load the tokenizer |
|
loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) |
|
|
|
# Protein sequence for inference |
|
protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence |
|
|
|
# Tokenize the sequence |
|
inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') |
|
|
|
# Run the model |
|
with torch.no_grad(): |
|
logits = loaded_model(**inputs).logits |
|
|
|
# Get predictions |
|
tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens |
|
predictions = torch.argmax(logits, dim=2) |
|
|
|
# Define labels |
|
id2label = { |
|
0: "No binding site", |
|
1: "Binding site" |
|
} |
|
|
|
# Print the predicted labels for each token |
|
for token, prediction in zip(tokens, predictions[0].numpy()): |
|
if token not in ['<pad>', '<cls>', '<eos>']: |
|
print((token, id2label[prediction])) |
|
|
|
``` |
|
|