metadata
language:
- en
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
base_model: microsoft/phi-2
pipeline_tag: text-generation
model-index:
- name: spin-phi2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.57
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 75.57
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.93
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.22
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.3
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=amu/spin-phi2
name: Open LLM Leaderboard
outputs
This model is a fine-tuned version of microsoft/phi-2 using SPIN on ultrachat_200k dataset.
What's new
I think SPIN not only can use on a SFT model, but also it can use on a pretrained model. Therefore, I use SPIN on a pretrained model microsoft/phi-2. And I get a higher score better than origin pretrained model. You can check the open llm leaderboard.
But the ultrachat_200k dataset is a alignment dataset for sft model. I think there should use a alignment dataset for pretrained model.
I Think the best paradigm for training a conversational Large Language Model (LLM): pretrain -> dpo(spin) -> sft -> dpo(spin)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 61.68 |
AI2 Reasoning Challenge (25-Shot) | 63.57 |
HellaSwag (10-Shot) | 75.57 |
MMLU (5-Shot) | 57.93 |
TruthfulQA (0-shot) | 46.22 |
Winogrande (5-shot) | 73.48 |
GSM8k (5-shot) | 53.30 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 61.68 |
AI2 Reasoning Challenge (25-Shot) | 63.57 |
HellaSwag (10-Shot) | 75.57 |
MMLU (5-Shot) | 57.93 |
TruthfulQA (0-shot) | 46.22 |
Winogrande (5-shot) | 73.48 |
GSM8k (5-shot) | 53.30 |