Products_NER8 / README.md
Atheer174's picture
End of training
2b23065
metadata
license: mit
base_model: dslim/bert-base-NER
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Products_NER8
    results: []

Products_NER8

This model is a fine-tuned version of dslim/bert-base-NER on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2028
  • Precision: 0.9227
  • Recall: 0.9267
  • F1: 0.9247
  • Accuracy: 0.9446

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1326 1.0 1235 0.1052 0.8887 0.9121 0.9003 0.9386
0.0959 2.0 2470 0.0927 0.8742 0.9085 0.8910 0.9417
0.0824 3.0 3705 0.0931 0.8970 0.9174 0.9070 0.9433
0.079 4.0 4940 0.0948 0.9067 0.9209 0.9137 0.9432
0.0762 5.0 6175 0.0962 0.8963 0.9179 0.9070 0.9437
0.0721 6.0 7410 0.1030 0.9095 0.9223 0.9159 0.9443
0.0683 7.0 8645 0.1070 0.9128 0.9233 0.9181 0.9439
0.0637 8.0 9880 0.1178 0.9157 0.9240 0.9199 0.9439
0.059 9.0 11115 0.1215 0.9176 0.9248 0.9212 0.9443
0.0527 10.0 12350 0.1367 0.9189 0.9247 0.9218 0.9438
0.0475 11.0 13585 0.1504 0.9199 0.9250 0.9224 0.9441
0.0431 12.0 14820 0.1484 0.9207 0.9259 0.9233 0.9446
0.0389 13.0 16055 0.1706 0.9224 0.9267 0.9246 0.9446
0.0368 14.0 17290 0.1847 0.9223 0.9265 0.9244 0.9445
0.0351 15.0 18525 0.2028 0.9227 0.9267 0.9247 0.9446

Framework versions

  • Transformers 4.33.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.1.0
  • Tokenizers 0.13.3