swiftformer-xs-DMAE / README.md
Augusto777's picture
End of training
5734af9 verified
|
raw
history blame
3.99 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-DMAE
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7391304347826086

swiftformer-xs-DMAE

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8596
  • Accuracy: 0.7391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0015
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.3836 0.4565
No log 2.0 7 1.3327 0.6522
1.3567 2.86 10 1.1681 0.6522
1.3567 4.0 14 1.0440 0.5652
1.3567 4.86 17 1.0462 0.6304
1.0903 6.0 21 0.9294 0.5870
1.0903 6.86 24 0.9572 0.6522
1.0903 8.0 28 0.9286 0.6739
1.0969 8.86 31 0.9229 0.6304
1.0969 10.0 35 0.9061 0.6522
1.0969 10.86 38 0.8341 0.6739
0.8923 12.0 42 0.8786 0.6739
0.8923 12.86 45 0.8596 0.7391
0.8923 14.0 49 0.8902 0.7174
0.7289 14.86 52 0.8024 0.6739
0.7289 16.0 56 0.9341 0.7174
0.7289 16.86 59 1.0464 0.7174
0.6609 18.0 63 0.9923 0.6087
0.6609 18.86 66 0.8225 0.7174
0.6527 20.0 70 0.8748 0.6957
0.6527 20.86 73 0.8052 0.6739
0.6527 22.0 77 0.8861 0.6957
0.493 22.86 80 0.9555 0.6957
0.493 24.0 84 1.0336 0.6739
0.493 24.86 87 0.9961 0.6957
0.4088 26.0 91 1.0400 0.6957
0.4088 26.86 94 1.0536 0.6957
0.4088 28.0 98 1.1388 0.6739
0.4047 28.86 101 1.2295 0.6522
0.4047 30.0 105 1.2627 0.6522
0.4047 30.86 108 1.2372 0.6739
0.3681 32.0 112 1.2919 0.6522
0.3681 32.86 115 1.2453 0.6522
0.3681 34.0 119 1.2612 0.6739
0.353 34.29 120 1.2611 0.6957

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0