BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ChristianBernhard/bge-base-financial-matryoshka")
# Run inference
sentences = [
'How many new aircraft did Delta Air Lines take delivery of in 2023?',
'In 2023, Delta took delivery of 43 aircraft.',
'The listing of our common stock on the NYSE could potentially create a conflict between the exchange’s regulatory responsibilities to vigorously oversee the listing and trading of securities, on the one hand, and our commercial and economic interest, on the other hand.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7 | 0.6914 | 0.6929 | 0.67 | 0.6557 |
cosine_accuracy@3 | 0.8329 | 0.8329 | 0.8329 | 0.8029 | 0.7871 |
cosine_accuracy@5 | 0.8614 | 0.8686 | 0.87 | 0.8629 | 0.8171 |
cosine_accuracy@10 | 0.9171 | 0.9186 | 0.91 | 0.9057 | 0.8743 |
cosine_precision@1 | 0.7 | 0.6914 | 0.6929 | 0.67 | 0.6557 |
cosine_precision@3 | 0.2776 | 0.2776 | 0.2776 | 0.2676 | 0.2624 |
cosine_precision@5 | 0.1723 | 0.1737 | 0.174 | 0.1726 | 0.1634 |
cosine_precision@10 | 0.0917 | 0.0919 | 0.091 | 0.0906 | 0.0874 |
cosine_recall@1 | 0.7 | 0.6914 | 0.6929 | 0.67 | 0.6557 |
cosine_recall@3 | 0.8329 | 0.8329 | 0.8329 | 0.8029 | 0.7871 |
cosine_recall@5 | 0.8614 | 0.8686 | 0.87 | 0.8629 | 0.8171 |
cosine_recall@10 | 0.9171 | 0.9186 | 0.91 | 0.9057 | 0.8743 |
cosine_ndcg@10 | 0.8082 | 0.8057 | 0.8032 | 0.7882 | 0.7637 |
cosine_mrr@10 | 0.7735 | 0.7695 | 0.7687 | 0.7506 | 0.7285 |
cosine_map@100 | 0.7771 | 0.7732 | 0.7728 | 0.7545 | 0.7337 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 20.82 tokens
- max: 41 tokens
- min: 9 tokens
- mean: 47.65 tokens
- max: 371 tokens
- Samples:
anchor positive What challenges did the company face in its supply chain during fiscal 2021?
During fiscal 2021, we experienced significant disruptions in our supply chain which impacted our ability to ship products from overseas on a timely basis.
Is the information on Legal proceedings in the report straightforward or referenced to another section?
The information on Legal proceedings called for by Item 3 is incorporated by reference to Note 19 of the Notes to Consolidated Financial Statements in Item 8 of the report.
What factors particularly influence sales comparisons and comparable sales growth according to the annual report?
Sales comparisons can also be particularly influenced by certain factors that are beyond our control: fluctuations in currency exchange rates (with respect to our international operations); inflation or deflation and changes in the cost of gasoline and associated competitive conditions.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5819 | - | - | - | - | - |
0.9746 | 12 | - | 0.7909 | 0.7912 | 0.7907 | 0.7723 | 0.7444 |
1.6244 | 20 | 0.6676 | - | - | - | - | - |
1.9492 | 24 | - | 0.7991 | 0.7994 | 0.7983 | 0.7849 | 0.7571 |
2.4365 | 30 | 0.4321 | - | - | - | - | - |
2.9239 | 36 | - | 0.8089 | 0.8048 | 0.8016 | 0.7879 | 0.7637 |
3.2487 | 40 | 0.3958 | - | - | - | - | - |
3.8985 | 48 | - | 0.8082 | 0.8057 | 0.8032 | 0.7882 | 0.7637 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.2.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ChristianBernhard/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.700
- Cosine Accuracy@3 on dim 768self-reported0.833
- Cosine Accuracy@5 on dim 768self-reported0.861
- Cosine Accuracy@10 on dim 768self-reported0.917
- Cosine Precision@1 on dim 768self-reported0.700
- Cosine Precision@3 on dim 768self-reported0.278
- Cosine Precision@5 on dim 768self-reported0.172
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.700
- Cosine Recall@3 on dim 768self-reported0.833