metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
What was the total amount of current assets reported by The Hershey
Company for the year 2023?
sentences:
- >-
The total AUS for all categories, including alternative investments,
equity, fixed income, and liquidity products, summed up to $2,812
billion in 2023.
- >-
The Hershey Company reported a total of current assets amounting to
$2,912,103 for the year 2023.
- >-
Information on legal proceedings is included in Note 15 to the
Consolidated Financial Statements.
- source_sentence: What is listed under Item 8 in the document?
sentences:
- >-
Chubb Limited further advanced their goal of greater product, customer,
and geographical diversification with incremental purchases that led to
a controlling majority interest in Huatai Insurance Group Co. Ltd,
owning about 76.5 percent as of July 1, 2023.
- Item 8 includes Financial Statements and Supplementary Data.
- >-
Further, state attorneys general may bring civil actions seeking either
injunction or an unspecified amount in damages in response to violations
of the HIPAA privacy and security regulations.
- source_sentence: >-
What were the main factors contributing to the change in net sales for
fiscal 2022?
sentences:
- >-
The decrease in consolidated net sales in fiscal 2022 compared to fiscal
2021 was primarily attributable to the translation impact of a stronger
U.S. dollar, a decline in sales from new software releases and video
game accessories, partially offset by an increase in sales of new gaming
hardware and toys and collectibles.
- >-
We receive payment from the delivery partner subsequent to the transfer
of food and the payment terms are short-term in nature.
- >-
Net cash used in investing activities was $30.0 million in the year
ended December 31, 2022, and increased to $73.3 million in the year
ended December 31, 2023.
- source_sentence: What informs the ESG disclosures mentioned in the text?
sentences:
- >-
Common Equity Tier 1 (CET1) Capital refers to the total of common stock
and related surplus minus treasury stock, retained earnings, AOCI, and
qualifying minority interests after factoring in the necessary
regulatory adjustments and deductions.
- >-
Constant currency revenue percentage change is calculated by determining
the change in current period revenues over prior period revenues where
current period foreign currency revenues are translated using prior year
exchange outstanding rates and hedging effects are excluded from
revenues of both periods.
- >-
Our ESG disclosures are also informed by relevant topics identified
through third-party ESG reporting organizations, frameworks and
standards, such as the TCFD.
- source_sentence: How many new aircraft did Delta Air Lines take delivery of in 2023?
sentences:
- In 2023, Delta took delivery of 43 aircraft.
- >-
The listing of our common stock on the NYSE could potentially create a
conflict between the exchange’s regulatory responsibilities to
vigorously oversee the listing and trading of securities, on the one
hand, and our commercial and economic interest, on the other hand.
- >-
The Company's enterprise DEI Strategy is aligned to the DEI Vision and
Mission and rests on four core pillars: •Build a workforce of
individuals with diverse backgrounds, cultures, abilities and
perspectives •Foster a culture of inclusion where every individual
belongs •Transform talent and business processes to achieve equitable
opportunities for all •Drive innovation and growth with our business to
serve diverse markets around the world.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8614285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9171428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17228571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09171428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8614285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9171428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8082439242024833
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7734971655328796
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7770743874539329
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6914285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9185714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6914285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1737142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09185714285714283
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6914285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9185714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8056533729911755
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7695113378684802
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7731633620598676
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6928571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.87
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6928571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.174
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6928571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.87
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8031697277454632
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7687063492063488
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.772758974076829
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.67
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8028571428571428
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9057142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.67
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2676190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09057142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.67
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8028571428571428
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9057142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7882417708737697
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7505816326530609
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7545140112362249
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6557142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7871428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8171428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8742857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6557142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2623809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16342857142857142
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08742857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6557142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7871428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8171428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8742857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7637005971170125
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7285300453514736
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7336775414052045
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ChristianBernhard/bge-base-financial-matryoshka")
# Run inference
sentences = [
'How many new aircraft did Delta Air Lines take delivery of in 2023?',
'In 2023, Delta took delivery of 43 aircraft.',
'The listing of our common stock on the NYSE could potentially create a conflict between the exchange’s regulatory responsibilities to vigorously oversee the listing and trading of securities, on the one hand, and our commercial and economic interest, on the other hand.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7 | 0.6914 | 0.6929 | 0.67 | 0.6557 |
cosine_accuracy@3 | 0.8329 | 0.8329 | 0.8329 | 0.8029 | 0.7871 |
cosine_accuracy@5 | 0.8614 | 0.8686 | 0.87 | 0.8629 | 0.8171 |
cosine_accuracy@10 | 0.9171 | 0.9186 | 0.91 | 0.9057 | 0.8743 |
cosine_precision@1 | 0.7 | 0.6914 | 0.6929 | 0.67 | 0.6557 |
cosine_precision@3 | 0.2776 | 0.2776 | 0.2776 | 0.2676 | 0.2624 |
cosine_precision@5 | 0.1723 | 0.1737 | 0.174 | 0.1726 | 0.1634 |
cosine_precision@10 | 0.0917 | 0.0919 | 0.091 | 0.0906 | 0.0874 |
cosine_recall@1 | 0.7 | 0.6914 | 0.6929 | 0.67 | 0.6557 |
cosine_recall@3 | 0.8329 | 0.8329 | 0.8329 | 0.8029 | 0.7871 |
cosine_recall@5 | 0.8614 | 0.8686 | 0.87 | 0.8629 | 0.8171 |
cosine_recall@10 | 0.9171 | 0.9186 | 0.91 | 0.9057 | 0.8743 |
cosine_ndcg@10 | 0.8082 | 0.8057 | 0.8032 | 0.7882 | 0.7637 |
cosine_mrr@10 | 0.7735 | 0.7695 | 0.7687 | 0.7506 | 0.7285 |
cosine_map@100 | 0.7771 | 0.7732 | 0.7728 | 0.7545 | 0.7337 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 20.82 tokens
- max: 41 tokens
- min: 9 tokens
- mean: 47.65 tokens
- max: 371 tokens
- Samples:
anchor positive What challenges did the company face in its supply chain during fiscal 2021?
During fiscal 2021, we experienced significant disruptions in our supply chain which impacted our ability to ship products from overseas on a timely basis.
Is the information on Legal proceedings in the report straightforward or referenced to another section?
The information on Legal proceedings called for by Item 3 is incorporated by reference to Note 19 of the Notes to Consolidated Financial Statements in Item 8 of the report.
What factors particularly influence sales comparisons and comparable sales growth according to the annual report?
Sales comparisons can also be particularly influenced by certain factors that are beyond our control: fluctuations in currency exchange rates (with respect to our international operations); inflation or deflation and changes in the cost of gasoline and associated competitive conditions.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5819 | - | - | - | - | - |
0.9746 | 12 | - | 0.7909 | 0.7912 | 0.7907 | 0.7723 | 0.7444 |
1.6244 | 20 | 0.6676 | - | - | - | - | - |
1.9492 | 24 | - | 0.7991 | 0.7994 | 0.7983 | 0.7849 | 0.7571 |
2.4365 | 30 | 0.4321 | - | - | - | - | - |
2.9239 | 36 | - | 0.8089 | 0.8048 | 0.8016 | 0.7879 | 0.7637 |
3.2487 | 40 | 0.3958 | - | - | - | - | - |
3.8985 | 48 | - | 0.8082 | 0.8057 | 0.8032 | 0.7882 | 0.7637 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.2.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}