metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:69370
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: It is you who have to judge whether I fill the bill.”
sentences:
- >-
ସେ ଆହୁରି କହିଥିଲେ ଯେ ଏହି ଆନ୍ଦୋଳନ ଏତିକିରେ ଅଟକି ଯିବ ନାହିଁ, ବରଂ ଏହା ଅନ୍ୟ
ନଦୀକୁ ମଧ୍ୟ ପରିବ୍ୟାପ୍ତ ହେବ ।
- ସେ ଦୃଷ୍ଟିରୁ ମୁଁ ତମର ଯୋଗୀ ହେବି କି ନା ସେ କଥା ତମେ ହି ବିଚାର କରିବା କଥା |”
- >-
ଭାରତର ପ୍ରଥମ ରାଷ୍ଟ୍ରପତି ଭାବେ ତାଙ୍କ ନେତୃତ୍ୱ ଏବଂ ମାର୍ଗଦର୍ଶନ ଦେଶ ଗଠନର
ପ୍ରାରମ୍ଭିକ ସମୟରେ ଅତ୍ୟନ୍ତ ମୂଲ୍ୟବାନ ଥିଲା ।
- source_sentence: >-
Further, the MoU will facilitate in improving rehabilitation of persons
with disabilities especially for persons with intellectual disability and
mental illness in both the countries.
sentences:
- ତେଣୁ ଆଜି ବାସର ଘରଟିକୁ ସେ ସବୁଦିନଠାରୁ ଅଧ୍ରକ ଆଡ଼ମ୍ବରପୂର୍ଣ୍ଣ କରି ସଜାଇଛି ।
- >-
ଭାରତର ଏହି ମହାନ୍ ଭୂମି ଅନେକ ମହାପୁରୁଷଙ୍କୁ ଜନ୍ମ ଦେଇଛି ଏବଂ ସେହି ମହାପୁରୁଷମାନେ
ମାନବ ଜାତି ପାଇଁ କିଛି ଚମକ୍ରାର ଏବଂ ଅବିସ୍ମରଣୀୟ କାର୍ଯ୍ୟ କରିଛନ୍ତି ।
- >-
ପାଠ୍ୟକ୍ରମକୁ ବିକଶିତ କରିବା ଏବଂ ଅଧ୍ୟାପନା କର୍ମୀମାନଙ୍କ କ୍ଷମତା ନିର୍ମାଣ
କ୍ଷେତ୍ରରେ ମଧ୍ୟ ମାନବ ସମ୍ବଳ ବିକାଶ ମନ୍ତ୍ରଣାଳୟ, ଆଫଗାନିସ୍ତାନର ଉଚ୍ଚ ଶିକ୍ଷା
ମନ୍ତ୍ରଣାଳୟକୁ ସହାୟତା ପ୍ରଦାନ କରିବ ।
- source_sentence: >-
And all the people saw the cloudy pillar stand at the tabernacle door: and
all the people rose up and worshipped, every man in his tent door.
sentences:
- >-
ଇଶ୍ରାୟେଲର ରାଜା ୟିହୋଶାଫଟ୍କୁ କହିଲେ, "ମୁଁ ଛଦ୍ମ ବେଶ ରେ ୟୁଦ୍ଧ କରିବାକୁ ୟିବି,
ମାତ୍ର ତୁମ୍ଭେ ତୁମ୍ଭର ରାଜ ପୋଷାକ ପିନ୍ଧିବ।" ତେଣୁ ଇଶ୍ରାୟେଲର ରାଜା ଛଦ୍ମ ବେଶ ରେ
ୟୁଦ୍ଧକୁ ଗଲେ।
- >-
ତେଣୁ ଯେତବେେଳେ ଲୋକମାନେ ତମ୍ବୁର ଦ୍ବାର ଦେଶ ରେ ମେଘ ସ୍ତମ୍ଭ ଦେଖିଲେ। ସେତବେେଳେ
ଲୋକମାନେ ଆପଣା ଆପଣା ତମ୍ବୁ ଦ୍ବାର ରେ ଥାଇ ପ୍ରଣାମ କଲେ।
- ଆମେ ଏବେ ଗୋଟିଏ ପରେ ଗୋଟିଏ ରାଷ୍ଟ୍ର ସହ ଏଥି ଘେନି ରାଜିନାମା ସ୍ୱାକ୍ଷର କରୁଛୁ ।
- source_sentence: >-
And nation was destroyed of nation, and city of city: for God did vex them
with all adversity.
sentences:
- ଏହା ଆମର ପାରସ୍ପରିକ ବୁଝାମଣା ଏବଂ ଆଭିମୁଖ୍ୟରେ ସମୃଦ୍ଧ ଥିଲା ।
- >-
ଗୋଟିଏ ଦେଶ ଆଉ ଏକ ଦେଶକୁ ବିନାଶ କରୁଥିଲା ଓ ଗୋଟିଏ ନଗର ଆଉ ଗୋଟିଏ ନଗରକୁ ଧ୍ବଂସ
କରୁଥିଲା। ପରମେଶ୍ବର ସମାନଙ୍କେ ପ୍ରତି ସବୁ ପ୍ରକାର ଦୁର୍ଦ୍ଦଶା ଘଟାଉ ଥିବାରୁ ଏହିପରି
ଘଟୁଥିଲା।
- ଏହି ପର୍ବ ସମସ୍ତଙ୍କ ଜୀବନରେ ସୁଖ, ସମୃଦ୍ଧି ଏବଂ ଶାରୀରିକ ସୁସ୍ଥତା ଭରିଦେଉ ।
- source_sentence: >-
For I will defend this city, to save it, for mine own sake, and for my
servant David's sake.
sentences:
- >-
ଆମ ଦେଶର ସୌଭାଗ୍ୟ ଯେ ଆମେମାନେ ଯୌଥ ପରିବାରରେ ବଢ଼ୁ, ବଡ଼ ପରିବାରରେ ମିଳିମିଶି ରହୁ
ଫଳରେ ମାନସିକ ଅବସାଦର ସମ୍ଭାବନା କମ୍ ଥାଏ ।
- >-
ସେଠାକାର ଲୋକମାନଙ୍କୁ ଆଶ୍ୱାସନା ଦେଇ ପ୍ରଧାନମନ୍ତ୍ରୀ କହିଥିଲେ ଯେ ସେମାନଙ୍କୁ
ସବୁପ୍ରକାରର ସହାୟତା ଯୋଗାଇ ଦିଆଯିବ ।
- >-
ମୁଁ ଏହି ନଗରକୁ ରକ୍ଷା କରିବି। ମାେ ନିଜ ସକାେଶ ଓ ମାରେ ଦାସ ଦାଉଦ ନିମନ୍ତେ ମୁଁ ଏ
ନଗରକୁ ସୁରକ୍ଷା ଦବେି।"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: dev evaluation
type: dev-evaluation
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2_odien")
# Run inference
sentences = [
"For I will defend this city, to save it, for mine own sake, and for my servant David's sake.",
'ମୁଁ ଏହି ନଗରକୁ ରକ୍ଷା କରିବି। ମାେ ନିଜ ସକାେଶ ଓ ମାରେ ଦାସ ଦାଉଦ ନିମନ୍ତେ ମୁଁ ଏ ନଗରକୁ ସୁରକ୍ଷା ଦବେି।"',
'ସେଠାକାର ଲୋକମାନଙ୍କୁ ଆଶ୍ୱାସନା ଦେଇ ପ୍ରଧାନମନ୍ତ୍ରୀ କହିଥିଲେ ଯେ ସେମାନଙ୍କୁ ସବୁପ୍ରକାରର ସହାୟତା ଯୋଗାଇ ଦିଆଯିବ ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
dev-evaluation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | nan |
spearman_cosine | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 69,370 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 29.5 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 41.43 tokens
- max: 128 tokens
- min: 0.9
- mean: 0.9
- max: 0.9
- Samples:
sentence_0 sentence_1 label “Wishing our most beloved & widely respected Atal Ji a happy birthday.
“ଆମର ଅତ୍ୟନ୍ତ ପ୍ରିୟ ଓ ସ୍ନେହର ଆଦରଣୀୟ ଅଟଳ ଜୀଙ୍କୁ ଜନ୍ମ ଦିନର ଶୁଭେଚ୍ଛା ।
0.9
The project is also an example of environment friendly development.
ଏହି ପରିଯୋଜନା ପରିବେଶ ଅନୁକୂଳ ବିକାଶର ଏକ ଉଦାହରଣ ମଧ୍ୟ ।
0.9
Old as the hills
ପାହାଡ଼ ପ୍ର ପୁରୁଣା
0.9
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | dev-evaluation_spearman_cosine |
---|---|---|---|
0.1153 | 500 | 0.1806 | - |
0.2306 | 1000 | 0.0047 | nan |
0.3459 | 1500 | 0.0013 | - |
0.4613 | 2000 | 0.0006 | nan |
0.5766 | 2500 | 0.0003 | - |
0.6919 | 3000 | 0.0002 | nan |
0.8072 | 3500 | 0.0001 | - |
0.9225 | 4000 | 0.0001 | nan |
1.0 | 4336 | - | nan |
1.0378 | 4500 | 0.0 | - |
1.1531 | 5000 | 0.0 | nan |
1.2685 | 5500 | 0.0 | - |
1.3838 | 6000 | 0.0 | nan |
1.4991 | 6500 | 0.0 | - |
1.6144 | 7000 | 0.0 | nan |
1.7297 | 7500 | 0.0 | - |
1.8450 | 8000 | 0.0 | nan |
1.9603 | 8500 | 0.0 | - |
2.0 | 8672 | - | nan |
2.0756 | 9000 | 0.0 | nan |
2.1910 | 9500 | 0.0 | - |
2.3063 | 10000 | 0.0 | nan |
2.4216 | 10500 | 0.0 | - |
2.5369 | 11000 | 0.0 | nan |
2.6522 | 11500 | 0.0 | - |
2.7675 | 12000 | 0.0 | nan |
2.8828 | 12500 | 0.0 | - |
2.9982 | 13000 | 0.0 | nan |
3.0 | 13008 | - | nan |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}