Debk's picture
Add new SentenceTransformer model.
951adb6 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:69370
  - loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: It is you who have to judge whether I fill the bill.”
    sentences:
      - >-
        ସେ ଆହୁରି କହିଥିଲେ ଯେ ଏହି ଆନ୍ଦୋଳନ ଏତିକିରେ ଅଟକି ଯିବ ନାହିଁ, ବରଂ ଏହା ଅନ୍ୟ
        ନଦୀକୁ ମଧ୍ୟ ପରିବ୍ୟାପ୍ତ ହେବ ।
      - ସେ ଦୃଷ୍ଟିରୁ ମୁଁ ତମର ଯୋଗୀ ହେବି କି ନା ସେ କଥା ତମେ ହି ବିଚାର କରିବା କଥା |”
      - >-
        ଭାରତର ପ୍ରଥମ ରାଷ୍ଟ୍ରପତି ଭାବେ ତାଙ୍କ ନେତୃତ୍ୱ ଏବଂ ମାର୍ଗଦର୍ଶନ ଦେଶ ଗଠନର
        ପ୍ରାରମ୍ଭିକ ସମୟରେ ଅତ୍ୟନ୍ତ ମୂଲ୍ୟବାନ ଥିଲା ।
  - source_sentence: >-
      Further, the MoU will facilitate in improving rehabilitation of persons
      with disabilities especially for persons with intellectual disability and
      mental illness in both the countries.
    sentences:
      - ତେଣୁ ଆଜି ବାସର ଘରଟିକୁ ସେ ସବୁଦିନଠାରୁ ଅଧ୍ରକ ଆଡ଼ମ୍ବରପୂର୍ଣ୍ଣ କରି ସଜାଇଛି 
      - >-
        ଭାରତର ଏହି ମହାନ୍ ଭୂମି ଅନେକ ମହାପୁରୁଷଙ୍କୁ ଜନ୍ମ ଦେଇଛି ଏବଂ ସେହି ମହାପୁରୁଷମାନେ
        ମାନବ ଜାତି ପାଇଁ କିଛି ଚମକ୍ରାର ଏବଂ ଅବିସ୍ମରଣୀୟ କାର୍ଯ୍ୟ କରିଛନ୍ତି ।
      - >-
        ପାଠ୍ୟକ୍ରମକୁ ବିକଶିତ କରିବା ଏବଂ ଅଧ୍ୟାପନା କର୍ମୀମାନଙ୍କ କ୍ଷମତା ନିର୍ମାଣ
        କ୍ଷେତ୍ରରେ ମଧ୍ୟ ମାନବ ସମ୍ବଳ ବିକାଶ ମନ୍ତ୍ରଣାଳୟ, ଆଫଗାନିସ୍ତାନର ଉଚ୍ଚ ଶିକ୍ଷା
        ମନ୍ତ୍ରଣାଳୟକୁ ସହାୟତା ପ୍ରଦାନ କରିବ ।
  - source_sentence: >-
      And all the people saw the cloudy pillar stand at the tabernacle door: and
      all the people rose up and worshipped, every man in his tent door.
    sentences:
      - >-
        ଇଶ୍ରାୟେଲର ରାଜା ୟିହୋଶାଫଟ୍କୁ କହିଲେ, "ମୁଁ ଛଦ୍ମ ବେଶ ରେ ୟୁଦ୍ଧ କରିବାକୁ ୟିବି,
        ମାତ୍ର ତୁମ୍ଭେ ତୁମ୍ଭର ରାଜ ପୋଷାକ ପିନ୍ଧିବ।" ତେଣୁ ଇଶ୍ରାୟେଲର ରାଜା ଛଦ୍ମ ବେଶ ରେ
        ୟୁଦ୍ଧକୁ ଗଲେ।
      - >-
        ତେଣୁ ଯେତବେେଳେ ଲୋକମାନେ ତମ୍ବୁର ଦ୍ବାର ଦେଶ ରେ ମେଘ ସ୍ତମ୍ଭ ଦେଖିଲେ। ସେତବେେଳେ
        ଲୋକମାନେ ଆପଣା ଆପଣା ତମ୍ବୁ ଦ୍ବାର ରେ ଥାଇ ପ୍ରଣାମ କଲେ।
      - ଆମେ ଏବେ ଗୋଟିଏ ପରେ ଗୋଟିଏ ରାଷ୍ଟ୍ର ସହ ଏଥି ଘେନି ରାଜିନାମା ସ୍ୱାକ୍ଷର କରୁଛୁ 
  - source_sentence: >-
      And nation was destroyed of nation, and city of city: for God did vex them
      with all adversity.
    sentences:
      - ଏହା ଆମର ପାରସ୍ପରିକ ବୁଝାମଣା ଏବଂ ଆଭିମୁଖ୍ୟରେ ସମୃଦ୍ଧ ଥିଲା 
      - >-
        ଗୋଟିଏ ଦେଶ ଆଉ ଏକ ଦେଶକୁ ବିନାଶ କରୁଥିଲା ଓ ଗୋଟିଏ ନଗର ଆଉ ଗୋଟିଏ ନଗରକୁ ଧ୍ବଂସ
        କରୁଥିଲା। ପରମେଶ୍ବର ସମାନଙ୍କେ ପ୍ରତି ସବୁ ପ୍ରକାର ଦୁର୍ଦ୍ଦଶା ଘଟାଉ ଥିବାରୁ ଏହିପରି
        ଘଟୁଥିଲା।
      - ଏହି ପର୍ବ ସମସ୍ତଙ୍କ ଜୀବନରେ ସୁଖ, ସମୃଦ୍ଧି ଏବଂ ଶାରୀରିକ ସୁସ୍ଥତା ଭରିଦେଉ 
  - source_sentence: >-
      For I will defend this city, to save it, for mine own sake, and for my
      servant David's sake.
    sentences:
      - >-
        ଆମ ଦେଶର ସୌଭାଗ୍ୟ ଯେ ଆମେମାନେ ଯୌଥ ପରିବାରରେ ବଢ଼ୁ, ବଡ଼ ପରିବାରରେ ମିଳିମିଶି ରହୁ
        ଫଳରେ ମାନସିକ ଅବସାଦର ସମ୍ଭାବନା କମ୍ ଥାଏ ।
      - >-
        ସେଠାକାର ଲୋକମାନଙ୍କୁ ଆଶ୍ୱାସନା ଦେଇ ପ୍ରଧାନମନ୍ତ୍ରୀ କହିଥିଲେ ଯେ ସେମାନଙ୍କୁ
        ସବୁପ୍ରକାରର ସହାୟତା ଯୋଗାଇ ଦିଆଯିବ ।
      - >-
        ମୁଁ ଏହି ନଗରକୁ ରକ୍ଷା କରିବି। ମାେ ନିଜ ସକାେଶ ଓ ମାରେ ଦାସ ଦାଉଦ ନିମନ୍ତେ ମୁଁ ଏ
        ନଗରକୁ ସୁରକ୍ଷା ଦବେି।"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: dev evaluation
          type: dev-evaluation
        metrics:
          - type: pearson_cosine
            value: .nan
            name: Pearson Cosine
          - type: spearman_cosine
            value: .nan
            name: Spearman Cosine

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2_odien")
# Run inference
sentences = [
    "For I will defend this city, to save it, for mine own sake, and for my servant David's sake.",
    'ମୁଁ ଏହି ନଗରକୁ ରକ୍ଷା କରିବି। ମାେ ନିଜ ସକାେଶ ଓ ମାରେ ଦାସ ଦାଉଦ ନିମନ୍ତେ ମୁଁ ଏ ନଗରକୁ ସୁରକ୍ଷା ଦବେି।"',
    'ସେଠାକାର ଲୋକମାନଙ୍କୁ ଆଶ୍ୱାସନା ଦେଇ ପ୍ରଧାନମନ୍ତ୍ରୀ କହିଥିଲେ ଯେ ସେମାନଙ୍କୁ ସବୁପ୍ରକାରର ସହାୟତା ଯୋଗାଇ ଦିଆଯିବ ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine nan
spearman_cosine nan

Training Details

Training Dataset

Unnamed Dataset

  • Size: 69,370 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 29.5 tokens
    • max: 128 tokens
    • min: 3 tokens
    • mean: 41.43 tokens
    • max: 128 tokens
    • min: 0.9
    • mean: 0.9
    • max: 0.9
  • Samples:
    sentence_0 sentence_1 label
    “Wishing our most beloved & widely respected Atal Ji a happy birthday. “ଆମର ଅତ୍ୟନ୍ତ ପ୍ରିୟ ଓ ସ୍ନେହର ଆଦରଣୀୟ ଅଟଳ ଜୀଙ୍କୁ ଜନ୍ମ ଦିନର ଶୁଭେଚ୍ଛା । 0.9
    The project is also an example of environment friendly development. ଏହି ପରିଯୋଜନା ପରିବେଶ ଅନୁକୂଳ ବିକାଶର ଏକ ଉଦାହରଣ ମଧ୍ୟ । 0.9
    Old as the hills ପାହାଡ଼ ପ୍ର ପୁରୁଣା 0.9
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss dev-evaluation_spearman_cosine
0.1153 500 0.1806 -
0.2306 1000 0.0047 nan
0.3459 1500 0.0013 -
0.4613 2000 0.0006 nan
0.5766 2500 0.0003 -
0.6919 3000 0.0002 nan
0.8072 3500 0.0001 -
0.9225 4000 0.0001 nan
1.0 4336 - nan
1.0378 4500 0.0 -
1.1531 5000 0.0 nan
1.2685 5500 0.0 -
1.3838 6000 0.0 nan
1.4991 6500 0.0 -
1.6144 7000 0.0 nan
1.7297 7500 0.0 -
1.8450 8000 0.0 nan
1.9603 8500 0.0 -
2.0 8672 - nan
2.0756 9000 0.0 nan
2.1910 9500 0.0 -
2.3063 10000 0.0 nan
2.4216 10500 0.0 -
2.5369 11000 0.0 nan
2.6522 11500 0.0 -
2.7675 12000 0.0 nan
2.8828 12500 0.0 -
2.9982 13000 0.0 nan
3.0 13008 - nan

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}