|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:69370 |
|
- loss:CosineSimilarityLoss |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
widget: |
|
- source_sentence: It is you who have to judge whether I fill the bill.” |
|
sentences: |
|
- ସେ ଆହୁରି କହିଥିଲେ ଯେ ଏହି ଆନ୍ଦୋଳନ ଏତିକିରେ ଅଟକି ଯିବ ନାହିଁ, ବରଂ ଏହା ଅନ୍ୟ ନଦୀକୁ ମଧ୍ୟ |
|
ପରିବ୍ୟାପ୍ତ ହେବ । |
|
- ସେ ଦୃଷ୍ଟିରୁ ମୁଁ ତମର ଯୋଗୀ ହେବି କି ନା ସେ କଥା ତମେ ହି ବିଚାର କରିବା କଥା |” |
|
- ଭାରତର ପ୍ରଥମ ରାଷ୍ଟ୍ରପତି ଭାବେ ତାଙ୍କ ନେତୃତ୍ୱ ଏବଂ ମାର୍ଗଦର୍ଶନ ଦେଶ ଗଠନର ପ୍ରାରମ୍ଭିକ ସମୟରେ |
|
ଅତ୍ୟନ୍ତ ମୂଲ୍ୟବାନ ଥିଲା । |
|
- source_sentence: Further, the MoU will facilitate in improving rehabilitation of |
|
persons with disabilities especially for persons with intellectual disability |
|
and mental illness in both the countries. |
|
sentences: |
|
- ତେଣୁ ଆଜି ବାସର ଘରଟିକୁ ସେ ସବୁଦିନଠାରୁ ଅଧ୍ରକ ଆଡ଼ମ୍ବରପୂର୍ଣ୍ଣ କରି ସଜାଇଛି । |
|
- ଭାରତର ଏହି ମହାନ୍ ଭୂମି ଅନେକ ମହାପୁରୁଷଙ୍କୁ ଜନ୍ମ ଦେଇଛି ଏବଂ ସେହି ମହାପୁରୁଷମାନେ ମାନବ ଜାତି |
|
ପାଇଁ କିଛି ଚମକ୍ରାର ଏବଂ ଅବିସ୍ମରଣୀୟ କାର୍ଯ୍ୟ କରିଛନ୍ତି । |
|
- ପାଠ୍ୟକ୍ରମକୁ ବିକଶିତ କରିବା ଏବଂ ଅଧ୍ୟାପନା କର୍ମୀମାନଙ୍କ କ୍ଷମତା ନିର୍ମାଣ କ୍ଷେତ୍ରରେ ମଧ୍ୟ |
|
ମାନବ ସମ୍ବଳ ବିକାଶ ମନ୍ତ୍ରଣାଳୟ, ଆଫଗାନିସ୍ତାନର ଉଚ୍ଚ ଶିକ୍ଷା ମନ୍ତ୍ରଣାଳୟକୁ ସହାୟତା ପ୍ରଦାନ |
|
କରିବ । |
|
- source_sentence: 'And all the people saw the cloudy pillar stand at the tabernacle |
|
door: and all the people rose up and worshipped, every man in his tent door.' |
|
sentences: |
|
- ଇଶ୍ରାୟେଲର ରାଜା ୟିହୋଶାଫଟ୍କୁ କହିଲେ, "ମୁଁ ଛଦ୍ମ ବେଶ ରେ ୟୁଦ୍ଧ କରିବାକୁ ୟିବି, ମାତ୍ର ତୁମ୍ଭେ |
|
ତୁମ୍ଭର ରାଜ ପୋଷାକ ପିନ୍ଧିବ।" ତେଣୁ ଇଶ୍ରାୟେଲର ରାଜା ଛଦ୍ମ ବେଶ ରେ ୟୁଦ୍ଧକୁ ଗଲେ। |
|
- ତେଣୁ ଯେତବେେଳେ ଲୋକମାନେ ତମ୍ବୁର ଦ୍ବାର ଦେଶ ରେ ମେଘ ସ୍ତମ୍ଭ ଦେଖିଲେ। ସେତବେେଳେ ଲୋକମାନେ |
|
ଆପଣା ଆପଣା ତମ୍ବୁ ଦ୍ବାର ରେ ଥାଇ ପ୍ରଣାମ କଲେ। |
|
- ଆମେ ଏବେ ଗୋଟିଏ ପରେ ଗୋଟିଏ ରାଷ୍ଟ୍ର ସହ ଏଥି ଘେନି ରାଜିନାମା ସ୍ୱାକ୍ଷର କରୁଛୁ । |
|
- source_sentence: 'And nation was destroyed of nation, and city of city: for God |
|
did vex them with all adversity.' |
|
sentences: |
|
- ଏହା ଆମର ପାରସ୍ପରିକ ବୁଝାମଣା ଏବଂ ଆଭିମୁଖ୍ୟରେ ସମୃଦ୍ଧ ଥିଲା । |
|
- ଗୋଟିଏ ଦେଶ ଆଉ ଏକ ଦେଶକୁ ବିନାଶ କରୁଥିଲା ଓ ଗୋଟିଏ ନଗର ଆଉ ଗୋଟିଏ ନଗରକୁ ଧ୍ବଂସ କରୁଥିଲା। |
|
ପରମେଶ୍ବର ସମାନଙ୍କେ ପ୍ରତି ସବୁ ପ୍ରକାର ଦୁର୍ଦ୍ଦଶା ଘଟାଉ ଥିବାରୁ ଏହିପରି ଘଟୁଥିଲା। |
|
- ଏହି ପର୍ବ ସମସ୍ତଙ୍କ ଜୀବନରେ ସୁଖ, ସମୃଦ୍ଧି ଏବଂ ଶାରୀରିକ ସୁସ୍ଥତା ଭରିଦେଉ । |
|
- source_sentence: For I will defend this city, to save it, for mine own sake, and |
|
for my servant David's sake. |
|
sentences: |
|
- ଆମ ଦେଶର ସୌଭାଗ୍ୟ ଯେ ଆମେମାନେ ଯୌଥ ପରିବାରରେ ବଢ଼ୁ, ବଡ଼ ପରିବାରରେ ମିଳିମିଶି ରହୁ ଫଳରେ ମାନସିକ |
|
ଅବସାଦର ସମ୍ଭାବନା କମ୍ ଥାଏ । |
|
- ସେଠାକାର ଲୋକମାନଙ୍କୁ ଆଶ୍ୱାସନା ଦେଇ ପ୍ରଧାନମନ୍ତ୍ରୀ କହିଥିଲେ ଯେ ସେମାନଙ୍କୁ ସବୁପ୍ରକାରର |
|
ସହାୟତା ଯୋଗାଇ ଦିଆଯିବ । |
|
- ମୁଁ ଏହି ନଗରକୁ ରକ୍ଷା କରିବି। ମାେ ନିଜ ସକାେଶ ଓ ମାରେ ଦାସ ଦାଉଦ ନିମନ୍ତେ ମୁଁ ଏ ନଗରକୁ ସୁରକ୍ଷା |
|
ଦବେି।" |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: dev evaluation |
|
type: dev-evaluation |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Debk/Oriya_paraphrase-multilingual-MiniLM-L12-v2_odien") |
|
# Run inference |
|
sentences = [ |
|
"For I will defend this city, to save it, for mine own sake, and for my servant David's sake.", |
|
'ମୁଁ ଏହି ନଗରକୁ ରକ୍ଷା କରିବି। ମାେ ନିଜ ସକାେଶ ଓ ମାରେ ଦାସ ଦାଉଦ ନିମନ୍ତେ ମୁଁ ଏ ନଗରକୁ ସୁରକ୍ଷା ଦବେି।"', |
|
'ସେଠାକାର ଲୋକମାନଙ୍କୁ ଆଶ୍ୱାସନା ଦେଇ ପ୍ରଧାନମନ୍ତ୍ରୀ କହିଥିଲେ ଯେ ସେମାନଙ୍କୁ ସବୁପ୍ରକାରର ସହାୟତା ଯୋଗାଇ ଦିଆଯିବ ।', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `dev-evaluation` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 69,370 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 29.5 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 41.43 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.9</li><li>mean: 0.9</li><li>max: 0.9</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | label | |
|
|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-----------------| |
|
| <code>“Wishing our most beloved & widely respected Atal Ji a happy birthday.</code> | <code>“ଆମର ଅତ୍ୟନ୍ତ ପ୍ରିୟ ଓ ସ୍ନେହର ଆଦରଣୀୟ ଅଟଳ ଜୀଙ୍କୁ ଜନ୍ମ ଦିନର ଶୁଭେଚ୍ଛା ।</code> | <code>0.9</code> | |
|
| <code>The project is also an example of environment friendly development.</code> | <code>ଏହି ପରିଯୋଜନା ପରିବେଶ ଅନୁକୂଳ ବିକାଶର ଏକ ଉଦାହରଣ ମଧ୍ୟ ।</code> | <code>0.9</code> | |
|
| <code>Old as the hills</code> | <code>ପାହାଡ଼ ପ୍ର ପୁରୁଣା</code> | <code>0.9</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dev-evaluation_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:------------------------------:| |
|
| 0.1153 | 500 | 0.1806 | - | |
|
| 0.2306 | 1000 | 0.0047 | nan | |
|
| 0.3459 | 1500 | 0.0013 | - | |
|
| 0.4613 | 2000 | 0.0006 | nan | |
|
| 0.5766 | 2500 | 0.0003 | - | |
|
| 0.6919 | 3000 | 0.0002 | nan | |
|
| 0.8072 | 3500 | 0.0001 | - | |
|
| 0.9225 | 4000 | 0.0001 | nan | |
|
| 1.0 | 4336 | - | nan | |
|
| 1.0378 | 4500 | 0.0 | - | |
|
| 1.1531 | 5000 | 0.0 | nan | |
|
| 1.2685 | 5500 | 0.0 | - | |
|
| 1.3838 | 6000 | 0.0 | nan | |
|
| 1.4991 | 6500 | 0.0 | - | |
|
| 1.6144 | 7000 | 0.0 | nan | |
|
| 1.7297 | 7500 | 0.0 | - | |
|
| 1.8450 | 8000 | 0.0 | nan | |
|
| 1.9603 | 8500 | 0.0 | - | |
|
| 2.0 | 8672 | - | nan | |
|
| 2.0756 | 9000 | 0.0 | nan | |
|
| 2.1910 | 9500 | 0.0 | - | |
|
| 2.3063 | 10000 | 0.0 | nan | |
|
| 2.4216 | 10500 | 0.0 | - | |
|
| 2.5369 | 11000 | 0.0 | nan | |
|
| 2.6522 | 11500 | 0.0 | - | |
|
| 2.7675 | 12000 | 0.0 | nan | |
|
| 2.8828 | 12500 | 0.0 | - | |
|
| 2.9982 | 13000 | 0.0 | nan | |
|
| 3.0 | 13008 | - | nan | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |