Efferbach's picture
update model card README.md
7d10211
metadata
license: other
tags:
  - image-segmentation
  - vision
  - generated_from_trainer
model-index:
  - name: mobilevit-small-10k-steps
    results: []

mobilevit-small-10k-steps

This model is a fine-tuned version of apple/deeplabv3-mobilevit-small on the Efferbach/lane_master2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0821
  • Mean Iou: 0.0
  • Mean Accuracy: 0.0
  • Overall Accuracy: 0.0
  • Accuracy Background: nan
  • Accuracy Left: 0.0
  • Accuracy Right: 0.0
  • Iou Background: 0.0
  • Iou Left: 0.0
  • Iou Right: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Left Accuracy Right Iou Background Iou Left Iou Right
0.5041 1.0 385 0.3382 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.1553 2.0 770 0.1387 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.1019 3.0 1155 0.1037 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0882 4.0 1540 0.0883 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0828 5.0 1925 0.0823 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0807 6.0 2310 0.0820 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0795 7.0 2695 0.0804 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0786 8.0 3080 0.0784 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0777 9.0 3465 0.0786 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0771 10.0 3850 0.0774 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0773 11.0 4235 0.0775 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0765 12.0 4620 0.0782 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0757 13.0 5005 0.0775 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0756 14.0 5390 0.0774 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0754 15.0 5775 0.0775 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0746 16.0 6160 0.0775 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.074 17.0 6545 0.0779 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0736 18.0 6930 0.0792 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0737 19.0 7315 0.0801 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.073 20.0 7700 0.0804 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0729 21.0 8085 0.0805 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0734 22.0 8470 0.0804 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0726 23.0 8855 0.0811 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0726 24.0 9240 0.0816 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0721 25.0 9625 0.0822 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0
0.0727 25.97 10000 0.0821 0.0 0.0 0.0 nan 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.28.0.dev0
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3