HachiML's picture
Update README.md
fa69247 verified
|
raw
history blame
1.13 kB
---
library_name: transformers
tags:
- time series
- embedding
license: mit
---
# MOMENT-1-large-embedding-v0.1
<!-- Provide a quick summary of what the model is/does. -->
This is an embedding model derived from [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large)
## How to use
```Python
from transformers import AutoConfig, AutoModel, AutoFeatureExtractor
model_name = "HachiML/MOMENT-1-large-embedding-v0.1"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, trust_remote_code=True)
```
```Python
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
model.to(device)
```
```Python
hist_ndaq = pd.DataFrame("nasdaq_price_history.csv")
input_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512]
inputs = feature_extractor(input_data, return_tensors="pt")
# inputs = feature_extractor([input_data, input_data_2], return_tensors="pt") # You can also pass multiple data in a list.
inputs = inputs.to(device)
outputs = model(**inputs)
print(outputs.embeddings)
```