metadata
base_model: Qwen/Qwen2.5-0.5B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
- openvino
- openvino-export
This model was converted to OpenVINO from Qwen/Qwen2.5-0.5B-Instruct
using optimum-intel
via the export space.
First make sure you have optimum-intel installed:
pip install optimum[openvino]
To load your model you can do as follows: In huggingface space app.py
import gradio as gr
from huggingface_hub import InferenceClient
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline
# 載入模型和標記器
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# 建立生成管道
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def respond(message, history):
# 將當前訊息與歷史訊息合併
#input_text = message if not history else history[-1]["content"] + " " + message
input_text = message
# 獲取模型的回應
response = pipe(input_text, max_length=500, truncation=True, num_return_sequences=1)
reply = response[0]['generated_text']
# 返回新的消息格式
print(f"Message: {message}")
print(f"Reply: {reply}")
return reply
# 設定 Gradio 的聊天界面
demo = gr.ChatInterface(fn=respond, title="Chat with Qwen(通義千問) 2.5-0.5B", description="與 HelloSun/Qwen2.5-0.5B-Instruct-openvino 聊天!", type='messages')
if __name__ == "__main__":
demo.launch()
requirements.txt
huggingface_hub==0.25.2
optimum[openvino]