HelloSun's picture
Update README.md
9c8f2fd verified
|
raw
history blame
1.95 kB
metadata
base_model: Qwen/Qwen2.5-0.5B-Instruct
language:
  - en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
  - chat
  - openvino
  - openvino-export

This model was converted to OpenVINO from Qwen/Qwen2.5-0.5B-Instruct using optimum-intel via the export space.

First make sure you have optimum-intel installed:

pip install optimum[openvino]

To load your model you can do as follows: In huggingface space app.py

import gradio as gr
from huggingface_hub import InferenceClient
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline

# 載入模型和標記器
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# 建立生成管道
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

def respond(message, history):
    # 將當前訊息與歷史訊息合併
    #input_text = message if not history else history[-1]["content"] + " " + message
    input_text = message
    # 獲取模型的回應
    response = pipe(input_text, max_length=500, truncation=True, num_return_sequences=1)
    reply = response[0]['generated_text']
    
    # 返回新的消息格式
    print(f"Message: {message}")
    print(f"Reply: {reply}")
    return reply
    
# 設定 Gradio 的聊天界面
demo = gr.ChatInterface(fn=respond, title="Chat with Qwen(通義千問) 2.5-0.5B", description="與 HelloSun/Qwen2.5-0.5B-Instruct-openvino 聊天!", type='messages')

if __name__ == "__main__":
    demo.launch()

requirements.txt

huggingface_hub==0.25.2
optimum[openvino]