language: | |
- "zh" | |
tags: | |
- "chinese" | |
- "token-classification" | |
- "pos" | |
- "dependency-parsing" | |
base_model: KoichiYasuoka/deberta-large-chinese-erlangshen-upos | |
datasets: | |
- "universal_dependencies" | |
license: "apache-2.0" | |
pipeline_tag: "token-classification" | |
# deberta-large-chinese-erlangshen-ud-goeswith | |
## Model Description | |
This is a DeBERTa(V2) model pre-trained on Chinese texts (both simplified and traditional) for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-large-chinese-erlangshen-upos](https://huggingface.co/KoichiYasuoka/deberta-large-chinese-erlangshen-upos). | |
## How to Use | |
```py | |
from transformers import pipeline | |
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") | |
print(nlp("我把这本书看完了")) | |
``` | |