|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6300 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: The lawsuits were filed in the wake of media reports that the U.S. |
|
Department of Justice had served civil investigative demands upon these carriers |
|
seeking documents and information relating to this subject. |
|
sentences: |
|
- What type of details does Note 15 of the Consolidated Financial Statements provide? |
|
- What action did the U.S. Department of Justice take in relation to the antitrust |
|
allegations against Delta, American, United, and Southwest airlines? |
|
- What does the index in a financial report indicate? |
|
- source_sentence: Unearned Revenue comprises mainly unearned revenue related to volume |
|
licensing programs, which may include Software Assurance ("SA") and cloud services. |
|
sentences: |
|
- What was the total number of Starbucks employees worldwide as of October 1, 2023? |
|
- What primarily comprises unearned revenue according to the discussed financial |
|
statements? |
|
- How are impairment charges for the years 2021, 2022, and 2023 recorded for restaurants |
|
and offices, and what is their impact on financial statements? |
|
- source_sentence: Total sales and revenues for 2023 were $67.060 billion, an increase |
|
of $7.633 billion, or 13 percent, compared with $59.427 billion in 2022. |
|
sentences: |
|
- How much did Caterpillar's total sales and revenues increase by in 2023 compared |
|
to 2022? |
|
- What is included in the cost of revenues for Google? |
|
- What entity audited the company's consolidated financial statements? |
|
- source_sentence: 'Weighted average remaining lease term and discount rate at March |
|
31, 2023 and 2022 are as follows: At March 31, 2023 - Lease term: 7.5 years, Discount |
|
rate: 3.3%; At March 31, 2022 - Lease term: 6.8 years, Discount rate: 2.5%.' |
|
sentences: |
|
- What operating system is used for the Company's iPhone line? |
|
- What was the SRO's accrued amount as a receivable for CAT implementation expenses |
|
as of December 31, 2023? |
|
- What were the lease terms and discount rates for operating leases as of March |
|
31, 2023 and 2022? |
|
- source_sentence: During 2023, continuing investing activities generated $240 million, |
|
significantly influenced by $14.5 billion received from the maturities and sales |
|
of investments, with expenditures of $13.9 billion on investments and $456 million |
|
on property and equipment. |
|
sentences: |
|
- What significant financial activity occurred in continuing investing activities |
|
in 2023? |
|
- What indicates where to find information about legal proceedings in the consolidated |
|
financial statements of an Annual Report on Form 10-K? |
|
- How much cash, cash equivalents, and unrestricted marketable securities did the |
|
company have as of September 30, 2023? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6871428571428572 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8542857142857143 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9042857142857142 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6871428571428572 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27238095238095233 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17085714285714282 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09042857142857141 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6871428571428572 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8542857142857143 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9042857142857142 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7940751364022482 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7589863945578228 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7632147157763912 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6828571428571428 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8142857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8542857142857143 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9014285714285715 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6828571428571428 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2714285714285714 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17085714285714285 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09014285714285714 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6828571428571428 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8142857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8542857142857143 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9014285714285715 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7923306650275913 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7573690476190474 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7616425347398016 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6642857142857143 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8042857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8557142857142858 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8971428571428571 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6642857142857143 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2680952380952381 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17114285714285712 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.0897142857142857 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6642857142857143 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8042857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8557142857142858 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8971428571428571 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.781836757101301 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7447794784580494 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7491639960128558 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6457142857142857 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7828571428571428 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.83 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8857142857142857 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6457142857142857 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.26095238095238094 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16599999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08857142857142856 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6457142857142857 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7828571428571428 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.83 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8857142857142857 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7638551069830676 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7249971655328794 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7295529486648893 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6171428571428571 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7385714285714285 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.7928571428571428 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.84 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6171428571428571 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.24619047619047615 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.15857142857142856 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08399999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6171428571428571 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7385714285714285 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.7928571428571428 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.84 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7256498773041486 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.6893407029478454 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.6948404384614005 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Liu-Xiang/bge-base-financial-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'During 2023, continuing investing activities generated $240 million, significantly influenced by $14.5 billion received from the maturities and sales of investments, with expenditures of $13.9 billion on investments and $456 million on property and equipment.', |
|
'What significant financial activity occurred in continuing investing activities in 2023?', |
|
'What indicates where to find information about legal proceedings in the consolidated financial statements of an Annual Report on Form 10-K?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6871 | |
|
| cosine_accuracy@3 | 0.8171 | |
|
| cosine_accuracy@5 | 0.8543 | |
|
| cosine_accuracy@10 | 0.9043 | |
|
| cosine_precision@1 | 0.6871 | |
|
| cosine_precision@3 | 0.2724 | |
|
| cosine_precision@5 | 0.1709 | |
|
| cosine_precision@10 | 0.0904 | |
|
| cosine_recall@1 | 0.6871 | |
|
| cosine_recall@3 | 0.8171 | |
|
| cosine_recall@5 | 0.8543 | |
|
| cosine_recall@10 | 0.9043 | |
|
| cosine_ndcg@10 | 0.7941 | |
|
| cosine_mrr@10 | 0.759 | |
|
| **cosine_map@100** | **0.7632** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6829 | |
|
| cosine_accuracy@3 | 0.8143 | |
|
| cosine_accuracy@5 | 0.8543 | |
|
| cosine_accuracy@10 | 0.9014 | |
|
| cosine_precision@1 | 0.6829 | |
|
| cosine_precision@3 | 0.2714 | |
|
| cosine_precision@5 | 0.1709 | |
|
| cosine_precision@10 | 0.0901 | |
|
| cosine_recall@1 | 0.6829 | |
|
| cosine_recall@3 | 0.8143 | |
|
| cosine_recall@5 | 0.8543 | |
|
| cosine_recall@10 | 0.9014 | |
|
| cosine_ndcg@10 | 0.7923 | |
|
| cosine_mrr@10 | 0.7574 | |
|
| **cosine_map@100** | **0.7616** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6643 | |
|
| cosine_accuracy@3 | 0.8043 | |
|
| cosine_accuracy@5 | 0.8557 | |
|
| cosine_accuracy@10 | 0.8971 | |
|
| cosine_precision@1 | 0.6643 | |
|
| cosine_precision@3 | 0.2681 | |
|
| cosine_precision@5 | 0.1711 | |
|
| cosine_precision@10 | 0.0897 | |
|
| cosine_recall@1 | 0.6643 | |
|
| cosine_recall@3 | 0.8043 | |
|
| cosine_recall@5 | 0.8557 | |
|
| cosine_recall@10 | 0.8971 | |
|
| cosine_ndcg@10 | 0.7818 | |
|
| cosine_mrr@10 | 0.7448 | |
|
| **cosine_map@100** | **0.7492** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6457 | |
|
| cosine_accuracy@3 | 0.7829 | |
|
| cosine_accuracy@5 | 0.83 | |
|
| cosine_accuracy@10 | 0.8857 | |
|
| cosine_precision@1 | 0.6457 | |
|
| cosine_precision@3 | 0.261 | |
|
| cosine_precision@5 | 0.166 | |
|
| cosine_precision@10 | 0.0886 | |
|
| cosine_recall@1 | 0.6457 | |
|
| cosine_recall@3 | 0.7829 | |
|
| cosine_recall@5 | 0.83 | |
|
| cosine_recall@10 | 0.8857 | |
|
| cosine_ndcg@10 | 0.7639 | |
|
| cosine_mrr@10 | 0.725 | |
|
| **cosine_map@100** | **0.7296** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6171 | |
|
| cosine_accuracy@3 | 0.7386 | |
|
| cosine_accuracy@5 | 0.7929 | |
|
| cosine_accuracy@10 | 0.84 | |
|
| cosine_precision@1 | 0.6171 | |
|
| cosine_precision@3 | 0.2462 | |
|
| cosine_precision@5 | 0.1586 | |
|
| cosine_precision@10 | 0.084 | |
|
| cosine_recall@1 | 0.6171 | |
|
| cosine_recall@3 | 0.7386 | |
|
| cosine_recall@5 | 0.7929 | |
|
| cosine_recall@10 | 0.84 | |
|
| cosine_ndcg@10 | 0.7256 | |
|
| cosine_mrr@10 | 0.6893 | |
|
| **cosine_map@100** | **0.6948** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,300 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 45.54 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.38 tokens</li><li>max: 46 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>If the discount rate used to calculate the present value of these reserves changed by 25 basis points, net income would have been affected by approximately $1.1 million for fiscal 2023.</code> | <code>By what amount would net income for fiscal 2023 be affected if the discount rate used for calculating the present value of reserves changed by 25 basis points?</code> | |
|
| <code>Net revenue | $ | 8,110,518 | | | $ | 6,256,617 | | 100.0 | % | 100.0 | % | $ | 1,853,901 | 29.6 | %</code> | <code>What was the percentage increase in net revenue in 2022 compared to 2021?</code> | |
|
| <code>Item 8 covers Financial Statements and Supplementary Data.</code> | <code>What is included in Item 8 of the document?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.96 | 3 | - | 0.6943 | 0.7200 | 0.7341 | 0.6337 | 0.7346 | |
|
| 1.92 | 6 | - | 0.7178 | 0.7393 | 0.7525 | 0.6764 | 0.7513 | |
|
| 2.88 | 9 | - | 0.7280 | 0.7468 | 0.7584 | 0.6926 | 0.7611 | |
|
| 3.2 | 10 | 3.3659 | - | - | - | - | - | |
|
| **3.84** | **12** | **-** | **0.7296** | **0.7492** | **0.7616** | **0.6948** | **0.7632** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.9.18 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |