MSLars's picture
Training complete
6b4adc4 verified
metadata
base_model: LennartKeller/longformer-gottbert-base-8192-aw512
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: de_longformer_abstr_summ
    results: []

de_longformer_abstr_summ

This model is a fine-tuned version of LennartKeller/longformer-gottbert-base-8192-aw512 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2916
  • Precision: 0.2656
  • Recall: 0.2673
  • F1: 0.2665
  • Accuracy: 0.8948

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2741 1.0 1171 0.2860 0.0914 0.0307 0.0459 0.8979
0.2474 2.0 2342 0.2694 0.2918 0.2508 0.2697 0.8982
0.2074 3.0 3513 0.2916 0.2656 0.2673 0.2665 0.8948

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2