MSLars's picture
Training complete
6b4adc4 verified
---
base_model: LennartKeller/longformer-gottbert-base-8192-aw512
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: de_longformer_abstr_summ
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# de_longformer_abstr_summ
This model is a fine-tuned version of [LennartKeller/longformer-gottbert-base-8192-aw512](https://huggingface.co/LennartKeller/longformer-gottbert-base-8192-aw512) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2916
- Precision: 0.2656
- Recall: 0.2673
- F1: 0.2665
- Accuracy: 0.8948
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2741 | 1.0 | 1171 | 0.2860 | 0.0914 | 0.0307 | 0.0459 | 0.8979 |
| 0.2474 | 2.0 | 2342 | 0.2694 | 0.2918 | 0.2508 | 0.2697 | 0.8982 |
| 0.2074 | 3.0 | 3513 | 0.2916 | 0.2656 | 0.2673 | 0.2665 | 0.8948 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2