MarekMarik's picture
Add new SentenceTransformer model
980729c verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: >-
      Health Care Benefits revenue is principally derived from insurance
      premiums and fees billed to customers.
    sentences:
      - >-
        How much was the cumulative impairment and downward adjustments for
        observable price changes for the equity investments without readily
        determinable fair values as of December 31, 2023?
      - >-
        What are the revenue sources for the Company’s Health Care Benefits
        Segment?
      - >-
        What types of legal issues are generally categorized under Commitments
        and Contingencies in a Form 10-K?
  - source_sentence: >-
      Total net sales increased by 7% during the fiscal year ending December 30,
      2023 compared to the previous fiscal year.
    sentences:
      - >-
        What was the percentage increase in Data Center revenue for fiscal year
        2023 compared to the previous year?
      - >-
        What was the percentage increase in total net sales during the fiscal
        year ending December 30, 2023 compared to the previous fiscal year?
      - >-
        What were the expenses related to the fair value of restricted stock
        units (RSUs) and stock options for the years 2022, 2021, and 2020?
  - source_sentence: >-
      The laws and regulations of the jurisdictions in which our insurance and
      reinsurance subsidiaries are domiciled require among other things that
      these subsidiaries maintain minimum levels of statutory capital, surplus,
      and liquidity, meet solvency standards, and submit to periodic
      examinations of their financial condition.
    sentences:
      - >-
        What statutory requirements must insurance and reinsurance subsidiaries
        meet in their domiciled jurisdictions?
      - What activities has the federal government used the FCA to prosecute?
      - >-
        How are self-insurance reserves computed and presented in financial
        statements?
  - source_sentence: >-
      Services net sales increased 9% or $7.1 billion during 2023 compared to
      2022 due to higher net sales across all lines of business.
    sentences:
      - >-
        What is the leverage ratio requirement under the company's financial
        covenant as of January 28, 2023?
      - >-
        What are the enrollment periods for Medicare Advantage and stand-alone
        prescription drug plans?
      - >-
        What was the percentage increase in Services net sales from 2022 to
        2023?
  - source_sentence: >-
      Certain vendors have been impacted by volatility in the supply chain
      financing market.
    sentences:
      - >-
        How have certain vendors been impacted in the supply chain financing
        market?
      - >-
        What was the total value of the company's cash commitments as of
        December 31, 2023?
      - >-
        What are the key components used to define free cash flow in financial
        evaluations?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6871428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8485714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9085714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6871428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2723809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16971428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09085714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6871428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8485714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9085714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7960378752604689
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7603769841269836
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7640840138316877
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.6828571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8114285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8528571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9085714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6828571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2704761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17057142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09085714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6828571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8114285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8528571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9085714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7936620196836198
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7572222222222219
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7609298999926937
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.68
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8071428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8485714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8957142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.68
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26904761904761904
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16971428571428568
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08957142857142855
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.68
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8071428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8485714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8957142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7883110340362532
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7539733560090701
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7582685695127231
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6585714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7942857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.83
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8842857142857142
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6585714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26476190476190475
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16599999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08842857142857141
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6585714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7942857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.83
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8842857142857142
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7727884715594033
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.737036848072562
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7419081242961935
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6357142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7628571428571429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8142857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.87
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6357142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2542857142857142
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16285714285714287
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.087
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6357142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7628571428571429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8142857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.87
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7501277228250628
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7121167800453513
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7171110018302509
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MarekMarik/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Certain vendors have been impacted by volatility in the supply chain financing market.',
    'How have certain vendors been impacted in the supply chain financing market?',
    "What was the total value of the company's cash commitments as of December 31, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.6871 0.6829 0.68 0.6586 0.6357
cosine_accuracy@3 0.8171 0.8114 0.8071 0.7943 0.7629
cosine_accuracy@5 0.8486 0.8529 0.8486 0.83 0.8143
cosine_accuracy@10 0.9086 0.9086 0.8957 0.8843 0.87
cosine_precision@1 0.6871 0.6829 0.68 0.6586 0.6357
cosine_precision@3 0.2724 0.2705 0.269 0.2648 0.2543
cosine_precision@5 0.1697 0.1706 0.1697 0.166 0.1629
cosine_precision@10 0.0909 0.0909 0.0896 0.0884 0.087
cosine_recall@1 0.6871 0.6829 0.68 0.6586 0.6357
cosine_recall@3 0.8171 0.8114 0.8071 0.7943 0.7629
cosine_recall@5 0.8486 0.8529 0.8486 0.83 0.8143
cosine_recall@10 0.9086 0.9086 0.8957 0.8843 0.87
cosine_ndcg@10 0.796 0.7937 0.7883 0.7728 0.7501
cosine_mrr@10 0.7604 0.7572 0.754 0.737 0.7121
cosine_map@100 0.7641 0.7609 0.7583 0.7419 0.7171

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 45.84 tokens
    • max: 439 tokens
    • min: 7 tokens
    • mean: 20.62 tokens
    • max: 42 tokens
  • Samples:
    positive anchor
    We adopted SAB 121 during fiscal 2022, with no impact on our consolidated financial statements. What accounting guidance did the company adopt in fiscal 2022 and what was its impact on the consolidated financial statements?
    Mortgage Solutions revenue decreased 18% in 2023 compared to 2022, due to significantly lower mortgage credit inquiry volumes in 2023 compared to the prior year. What caused the 18% decline in Mortgage Solutions revenue in 2023 compared to 2022?
    Adoption of SBTi goals would build on our current science-based goals to reduce Scope 1 and 2 carbon emissions by 2.1% per year, to achieve a 40% reduction by the end of fiscal 2030 and a 50% reduction by the end of fiscal 2035. What is the company's percentage target for reducing Scope 1 and 2 carbon emissions by end of fiscal 2035?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.1015 10 0.614 - - - - -
0.2030 20 0.5098 - - - - -
0.3046 30 0.426 - - - - -
0.4061 40 0.3262 - - - - -
0.5076 50 0.2131 - - - - -
0.6091 60 0.1892 - - - - -
0.7107 70 0.3049 - - - - -
0.8122 80 0.1617 - - - - -
0.9137 90 0.1214 - - - - -
1.0 99 - 0.7895 0.7919 0.7800 0.7685 0.7361
1.0102 100 0.147 - - - - -
1.1117 110 0.0938 - - - - -
1.2132 120 0.1406 - - - - -
1.3147 130 0.1058 - - - - -
1.4162 140 0.1072 - - - - -
1.5178 150 0.0352 - - - - -
1.6193 160 0.0568 - - - - -
1.7208 170 0.1283 - - - - -
1.8223 180 0.066 - - - - -
1.9239 190 0.038 - - - - -
2.0 198 - 0.7945 0.7945 0.7860 0.7736 0.7462
2.0203 200 0.0544 - - - - -
2.1218 210 0.0333 - - - - -
2.2234 220 0.042 - - - - -
2.3249 230 0.0489 - - - - -
2.4264 240 0.0498 - - - - -
2.5279 250 0.0119 - - - - -
2.6294 260 0.0273 - - - - -
2.7310 270 0.0719 - - - - -
2.8325 280 0.0366 - - - - -
2.9340 290 0.0333 - - - - -
3.0 297 - 0.7927 0.7952 0.7881 0.7743 0.7477
3.0305 300 0.0193 - - - - -
3.1320 310 0.0254 - - - - -
3.2335 320 0.0252 - - - - -
3.3350 330 0.039 - - - - -
3.4365 340 0.0224 - - - - -
3.5381 350 0.0091 - - - - -
3.6396 360 0.0356 - - - - -
3.7411 370 0.042 - - - - -
3.8426 380 0.038 - - - - -
3.9442 390 0.0088 - - - - -
3.9645 392 - 0.7960 0.7937 0.7883 0.7728 0.7501
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}