metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
Health Care Benefits revenue is principally derived from insurance
premiums and fees billed to customers.
sentences:
- >-
How much was the cumulative impairment and downward adjustments for
observable price changes for the equity investments without readily
determinable fair values as of December 31, 2023?
- >-
What are the revenue sources for the Company’s Health Care Benefits
Segment?
- >-
What types of legal issues are generally categorized under Commitments
and Contingencies in a Form 10-K?
- source_sentence: >-
Total net sales increased by 7% during the fiscal year ending December 30,
2023 compared to the previous fiscal year.
sentences:
- >-
What was the percentage increase in Data Center revenue for fiscal year
2023 compared to the previous year?
- >-
What was the percentage increase in total net sales during the fiscal
year ending December 30, 2023 compared to the previous fiscal year?
- >-
What were the expenses related to the fair value of restricted stock
units (RSUs) and stock options for the years 2022, 2021, and 2020?
- source_sentence: >-
The laws and regulations of the jurisdictions in which our insurance and
reinsurance subsidiaries are domiciled require among other things that
these subsidiaries maintain minimum levels of statutory capital, surplus,
and liquidity, meet solvency standards, and submit to periodic
examinations of their financial condition.
sentences:
- >-
What statutory requirements must insurance and reinsurance subsidiaries
meet in their domiciled jurisdictions?
- What activities has the federal government used the FCA to prosecute?
- >-
How are self-insurance reserves computed and presented in financial
statements?
- source_sentence: >-
Services net sales increased 9% or $7.1 billion during 2023 compared to
2022 due to higher net sales across all lines of business.
sentences:
- >-
What is the leverage ratio requirement under the company's financial
covenant as of January 28, 2023?
- >-
What are the enrollment periods for Medicare Advantage and stand-alone
prescription drug plans?
- >-
What was the percentage increase in Services net sales from 2022 to
2023?
- source_sentence: >-
Certain vendors have been impacted by volatility in the supply chain
financing market.
sentences:
- >-
How have certain vendors been impacted in the supply chain financing
market?
- >-
What was the total value of the company's cash commitments as of
December 31, 2023?
- >-
What are the key components used to define free cash flow in financial
evaluations?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6871428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6871428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6871428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7960378752604689
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7603769841269836
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7640840138316877
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8528571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17057142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8528571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7936620196836198
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7572222222222219
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7609298999926937
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.68
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8071428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8485714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8957142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.68
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16971428571428568
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08957142857142855
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.68
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8071428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8485714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8957142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7883110340362532
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7539733560090701
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7582685695127231
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6585714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7942857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.83
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6585714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26476190476190475
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16599999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6585714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7942857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.83
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7727884715594033
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.737036848072562
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7419081242961935
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6357142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7628571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8142857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.87
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6357142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2542857142857142
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16285714285714287
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.087
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6357142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7628571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8142857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.87
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7501277228250628
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7121167800453513
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7171110018302509
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MarekMarik/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Certain vendors have been impacted by volatility in the supply chain financing market.',
'How have certain vendors been impacted in the supply chain financing market?',
"What was the total value of the company's cash commitments as of December 31, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.6871 | 0.6829 | 0.68 | 0.6586 | 0.6357 |
cosine_accuracy@3 | 0.8171 | 0.8114 | 0.8071 | 0.7943 | 0.7629 |
cosine_accuracy@5 | 0.8486 | 0.8529 | 0.8486 | 0.83 | 0.8143 |
cosine_accuracy@10 | 0.9086 | 0.9086 | 0.8957 | 0.8843 | 0.87 |
cosine_precision@1 | 0.6871 | 0.6829 | 0.68 | 0.6586 | 0.6357 |
cosine_precision@3 | 0.2724 | 0.2705 | 0.269 | 0.2648 | 0.2543 |
cosine_precision@5 | 0.1697 | 0.1706 | 0.1697 | 0.166 | 0.1629 |
cosine_precision@10 | 0.0909 | 0.0909 | 0.0896 | 0.0884 | 0.087 |
cosine_recall@1 | 0.6871 | 0.6829 | 0.68 | 0.6586 | 0.6357 |
cosine_recall@3 | 0.8171 | 0.8114 | 0.8071 | 0.7943 | 0.7629 |
cosine_recall@5 | 0.8486 | 0.8529 | 0.8486 | 0.83 | 0.8143 |
cosine_recall@10 | 0.9086 | 0.9086 | 0.8957 | 0.8843 | 0.87 |
cosine_ndcg@10 | 0.796 | 0.7937 | 0.7883 | 0.7728 | 0.7501 |
cosine_mrr@10 | 0.7604 | 0.7572 | 0.754 | 0.737 | 0.7121 |
cosine_map@100 | 0.7641 | 0.7609 | 0.7583 | 0.7419 | 0.7171 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 45.84 tokens
- max: 439 tokens
- min: 7 tokens
- mean: 20.62 tokens
- max: 42 tokens
- Samples:
positive anchor We adopted SAB 121 during fiscal 2022, with no impact on our consolidated financial statements.
What accounting guidance did the company adopt in fiscal 2022 and what was its impact on the consolidated financial statements?
Mortgage Solutions revenue decreased 18% in 2023 compared to 2022, due to significantly lower mortgage credit inquiry volumes in 2023 compared to the prior year.
What caused the 18% decline in Mortgage Solutions revenue in 2023 compared to 2022?
Adoption of SBTi goals would build on our current science-based goals to reduce Scope 1 and 2 carbon emissions by 2.1% per year, to achieve a 40% reduction by the end of fiscal 2030 and a 50% reduction by the end of fiscal 2035.
What is the company's percentage target for reducing Scope 1 and 2 carbon emissions by end of fiscal 2035?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 4gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.1015 | 10 | 0.614 | - | - | - | - | - |
0.2030 | 20 | 0.5098 | - | - | - | - | - |
0.3046 | 30 | 0.426 | - | - | - | - | - |
0.4061 | 40 | 0.3262 | - | - | - | - | - |
0.5076 | 50 | 0.2131 | - | - | - | - | - |
0.6091 | 60 | 0.1892 | - | - | - | - | - |
0.7107 | 70 | 0.3049 | - | - | - | - | - |
0.8122 | 80 | 0.1617 | - | - | - | - | - |
0.9137 | 90 | 0.1214 | - | - | - | - | - |
1.0 | 99 | - | 0.7895 | 0.7919 | 0.7800 | 0.7685 | 0.7361 |
1.0102 | 100 | 0.147 | - | - | - | - | - |
1.1117 | 110 | 0.0938 | - | - | - | - | - |
1.2132 | 120 | 0.1406 | - | - | - | - | - |
1.3147 | 130 | 0.1058 | - | - | - | - | - |
1.4162 | 140 | 0.1072 | - | - | - | - | - |
1.5178 | 150 | 0.0352 | - | - | - | - | - |
1.6193 | 160 | 0.0568 | - | - | - | - | - |
1.7208 | 170 | 0.1283 | - | - | - | - | - |
1.8223 | 180 | 0.066 | - | - | - | - | - |
1.9239 | 190 | 0.038 | - | - | - | - | - |
2.0 | 198 | - | 0.7945 | 0.7945 | 0.7860 | 0.7736 | 0.7462 |
2.0203 | 200 | 0.0544 | - | - | - | - | - |
2.1218 | 210 | 0.0333 | - | - | - | - | - |
2.2234 | 220 | 0.042 | - | - | - | - | - |
2.3249 | 230 | 0.0489 | - | - | - | - | - |
2.4264 | 240 | 0.0498 | - | - | - | - | - |
2.5279 | 250 | 0.0119 | - | - | - | - | - |
2.6294 | 260 | 0.0273 | - | - | - | - | - |
2.7310 | 270 | 0.0719 | - | - | - | - | - |
2.8325 | 280 | 0.0366 | - | - | - | - | - |
2.9340 | 290 | 0.0333 | - | - | - | - | - |
3.0 | 297 | - | 0.7927 | 0.7952 | 0.7881 | 0.7743 | 0.7477 |
3.0305 | 300 | 0.0193 | - | - | - | - | - |
3.1320 | 310 | 0.0254 | - | - | - | - | - |
3.2335 | 320 | 0.0252 | - | - | - | - | - |
3.3350 | 330 | 0.039 | - | - | - | - | - |
3.4365 | 340 | 0.0224 | - | - | - | - | - |
3.5381 | 350 | 0.0091 | - | - | - | - | - |
3.6396 | 360 | 0.0356 | - | - | - | - | - |
3.7411 | 370 | 0.042 | - | - | - | - | - |
3.8426 | 380 | 0.038 | - | - | - | - | - |
3.9442 | 390 | 0.0088 | - | - | - | - | - |
3.9645 | 392 | - | 0.7960 | 0.7937 | 0.7883 | 0.7728 | 0.7501 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}