|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1115700 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Geotrend/bert-base-sw-cased |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege. |
|
sentences: |
|
- Panya anayekimbia juu ya gurudumu. |
|
- Mtu anashindana katika mashindano ya mbio. |
|
- Ndege anayeruka. |
|
- source_sentence: Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia |
|
mfuko wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye |
|
rangi nyingi. |
|
sentences: |
|
- Mwanamke mzee anakataa kupigwa picha. |
|
- mtu akila na mvulana mdogo kwenye kijia cha jiji |
|
- Msichana mchanga anakabili kamera. |
|
- source_sentence: Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha |
|
watoto wadogo wameketi ndani katika kivuli. |
|
sentences: |
|
- Mwanamke na watoto na kukaa chini. |
|
- Mwanamke huyo anakimbia. |
|
- Watu wanasafiri kwa baiskeli. |
|
- source_sentence: Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi |
|
ya kuogelea akiwa kwenye dimbwi. |
|
sentences: |
|
- Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye dimbwi. |
|
- Someone is holding oranges and walking |
|
- Mama na binti wakinunua viatu. |
|
- source_sentence: Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa |
|
kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi |
|
nyuma. |
|
sentences: |
|
- tai huruka |
|
- mwanamume na mwanamke wenye mikoba |
|
- Wanaume wawili wameketi karibu na mwanamke. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on Geotrend/bert-base-sw-cased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6937245827269046 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6872564222432196 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6671541268726737 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6578428252987948 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6672292642346008 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6577692881532263 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5234944445417878 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5126395384896926 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6937245827269046 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6872564222432196 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.689885399601221 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6847071916895495 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6678379220949281 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6579957115799916 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6673062843667007 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6573006123381013 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.49533316366864977 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.48723679408818543 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.689885399601221 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6847071916895495 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6873377612773459 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6816874105466478 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.667357515297651 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6557727891191705 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6674937201647584 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6560441259953166 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.45660372834373963 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4533070407260065 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6873377612773459 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6816874105466478 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6836009506667413 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6795423695973911 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6663652896396122 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6534731725514219 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6663726876345561 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6537216014002204 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.43102957451470686 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.431538008932168 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6836009506667413 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6795423695973911 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6715253560367674 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.669070001537953 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6571390159051358 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6456119247619697 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6598587843081631 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6472279949159918 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.36757468941627225 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.3678274698380672 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6715253560367674 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.669070001537953 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on Geotrend/bert-base-sw-cased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Geotrend/bert-base-sw-cased](https://huggingface.co/Geotrend/bert-base-sw-cased) on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Geotrend/bert-base-sw-cased](https://huggingface.co/Geotrend/bert-base-sw-cased) <!-- at revision 7d9ca957a81d2449cf1319af0b91f75f11642336 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Mollel/swahili-n_li-triplet-swh-eng |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Mollel/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.', |
|
'mwanamume na mwanamke wenye mikoba', |
|
'tai huruka', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6937 | |
|
| **spearman_cosine** | **0.6873** | |
|
| pearson_manhattan | 0.6672 | |
|
| spearman_manhattan | 0.6578 | |
|
| pearson_euclidean | 0.6672 | |
|
| spearman_euclidean | 0.6578 | |
|
| pearson_dot | 0.5235 | |
|
| spearman_dot | 0.5126 | |
|
| pearson_max | 0.6937 | |
|
| spearman_max | 0.6873 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6899 | |
|
| **spearman_cosine** | **0.6847** | |
|
| pearson_manhattan | 0.6678 | |
|
| spearman_manhattan | 0.658 | |
|
| pearson_euclidean | 0.6673 | |
|
| spearman_euclidean | 0.6573 | |
|
| pearson_dot | 0.4953 | |
|
| spearman_dot | 0.4872 | |
|
| pearson_max | 0.6899 | |
|
| spearman_max | 0.6847 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6873 | |
|
| **spearman_cosine** | **0.6817** | |
|
| pearson_manhattan | 0.6674 | |
|
| spearman_manhattan | 0.6558 | |
|
| pearson_euclidean | 0.6675 | |
|
| spearman_euclidean | 0.656 | |
|
| pearson_dot | 0.4566 | |
|
| spearman_dot | 0.4533 | |
|
| pearson_max | 0.6873 | |
|
| spearman_max | 0.6817 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6836 | |
|
| **spearman_cosine** | **0.6795** | |
|
| pearson_manhattan | 0.6664 | |
|
| spearman_manhattan | 0.6535 | |
|
| pearson_euclidean | 0.6664 | |
|
| spearman_euclidean | 0.6537 | |
|
| pearson_dot | 0.431 | |
|
| spearman_dot | 0.4315 | |
|
| pearson_max | 0.6836 | |
|
| spearman_max | 0.6795 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6715 | |
|
| **spearman_cosine** | **0.6691** | |
|
| pearson_manhattan | 0.6571 | |
|
| spearman_manhattan | 0.6456 | |
|
| pearson_euclidean | 0.6599 | |
|
| spearman_euclidean | 0.6472 | |
|
| pearson_dot | 0.3676 | |
|
| spearman_dot | 0.3678 | |
|
| pearson_max | 0.6715 | |
|
| spearman_max | 0.6691 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Mollel/swahili-n_li-triplet-swh-eng |
|
|
|
* Dataset: Mollel/swahili-n_li-triplet-swh-eng |
|
* Size: 1,115,700 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 16.73 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.74 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.0 tokens</li><li>max: 49 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:----------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> | |
|
| <code>Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.</code> | <code>Mtu yuko nje, juu ya farasi.</code> | <code>Mtu yuko kwenye mkahawa, akiagiza omelette.</code> | |
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Mollel/swahili-n_li-triplet-swh-eng |
|
|
|
* Dataset: Mollel/swahili-n_li-triplet-swh-eng |
|
* Size: 13,168 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 28.25 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.16 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.55 tokens</li><li>max: 46 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:-------------------------------------------------------------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> | |
|
| <code>Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.</code> | <code>Wanawake wawili wanashikilia vifurushi.</code> | <code>Wanaume hao wanapigana nje ya duka la vyakula vitamu.</code> | |
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0057 | 100 | 19.9104 | - | - | - | - | - | |
|
| 0.0115 | 200 | 15.4038 | - | - | - | - | - | |
|
| 0.0172 | 300 | 12.4565 | - | - | - | - | - | |
|
| 0.0229 | 400 | 11.8633 | - | - | - | - | - | |
|
| 0.0287 | 500 | 11.0601 | - | - | - | - | - | |
|
| 0.0344 | 600 | 9.7725 | - | - | - | - | - | |
|
| 0.0402 | 700 | 8.8549 | - | - | - | - | - | |
|
| 0.0459 | 800 | 8.0831 | - | - | - | - | - | |
|
| 0.0516 | 900 | 7.9941 | - | - | - | - | - | |
|
| 0.0574 | 1000 | 7.6537 | - | - | - | - | - | |
|
| 0.0631 | 1100 | 7.9303 | - | - | - | - | - | |
|
| 0.0688 | 1200 | 7.5246 | - | - | - | - | - | |
|
| 0.0746 | 1300 | 7.7754 | - | - | - | - | - | |
|
| 0.0803 | 1400 | 7.668 | - | - | - | - | - | |
|
| 0.0860 | 1500 | 6.7171 | - | - | - | - | - | |
|
| 0.0918 | 1600 | 6.347 | - | - | - | - | - | |
|
| 0.0975 | 1700 | 6.0 | - | - | - | - | - | |
|
| 0.1033 | 1800 | 6.4314 | - | - | - | - | - | |
|
| 0.1090 | 1900 | 6.7947 | - | - | - | - | - | |
|
| 0.1147 | 2000 | 6.9316 | - | - | - | - | - | |
|
| 0.1205 | 2100 | 6.6304 | - | - | - | - | - | |
|
| 0.1262 | 2200 | 6.132 | - | - | - | - | - | |
|
| 0.1319 | 2300 | 5.8953 | - | - | - | - | - | |
|
| 0.1377 | 2400 | 5.6954 | - | - | - | - | - | |
|
| 0.1434 | 2500 | 5.6832 | - | - | - | - | - | |
|
| 0.1491 | 2600 | 5.2266 | - | - | - | - | - | |
|
| 0.1549 | 2700 | 5.0678 | - | - | - | - | - | |
|
| 0.1606 | 2800 | 5.4733 | - | - | - | - | - | |
|
| 0.1664 | 2900 | 6.0899 | - | - | - | - | - | |
|
| 0.1721 | 3000 | 6.332 | - | - | - | - | - | |
|
| 0.1778 | 3100 | 6.4937 | - | - | - | - | - | |
|
| 0.1836 | 3200 | 6.2242 | - | - | - | - | - | |
|
| 0.1893 | 3300 | 5.8023 | - | - | - | - | - | |
|
| 0.1950 | 3400 | 5.0745 | - | - | - | - | - | |
|
| 0.2008 | 3500 | 5.5806 | - | - | - | - | - | |
|
| 0.2065 | 3600 | 5.5191 | - | - | - | - | - | |
|
| 0.2122 | 3700 | 5.3849 | - | - | - | - | - | |
|
| 0.2180 | 3800 | 5.4828 | - | - | - | - | - | |
|
| 0.2237 | 3900 | 5.9982 | - | - | - | - | - | |
|
| 0.2294 | 4000 | 5.6842 | - | - | - | - | - | |
|
| 0.2352 | 4100 | 5.1627 | - | - | - | - | - | |
|
| 0.2409 | 4200 | 5.154 | - | - | - | - | - | |
|
| 0.2467 | 4300 | 5.7932 | - | - | - | - | - | |
|
| 0.2524 | 4400 | 5.5758 | - | - | - | - | - | |
|
| 0.2581 | 4500 | 5.5212 | - | - | - | - | - | |
|
| 0.2639 | 4600 | 5.5692 | - | - | - | - | - | |
|
| 0.2696 | 4700 | 5.2699 | - | - | - | - | - | |
|
| 0.2753 | 4800 | 5.4919 | - | - | - | - | - | |
|
| 0.2811 | 4900 | 5.0754 | - | - | - | - | - | |
|
| 0.2868 | 5000 | 5.1514 | - | - | - | - | - | |
|
| 0.2925 | 5100 | 5.0241 | - | - | - | - | - | |
|
| 0.2983 | 5200 | 5.2679 | - | - | - | - | - | |
|
| 0.3040 | 5300 | 5.3576 | - | - | - | - | - | |
|
| 0.3098 | 5400 | 5.3454 | - | - | - | - | - | |
|
| 0.3155 | 5500 | 5.2142 | - | - | - | - | - | |
|
| 0.3212 | 5600 | 4.8418 | - | - | - | - | - | |
|
| 0.3270 | 5700 | 4.9597 | - | - | - | - | - | |
|
| 0.3327 | 5800 | 5.1989 | - | - | - | - | - | |
|
| 0.3384 | 5900 | 5.2624 | - | - | - | - | - | |
|
| 0.3442 | 6000 | 5.0705 | - | - | - | - | - | |
|
| 0.3499 | 6100 | 5.232 | - | - | - | - | - | |
|
| 0.3556 | 6200 | 5.2428 | - | - | - | - | - | |
|
| 0.3614 | 6300 | 4.755 | - | - | - | - | - | |
|
| 0.3671 | 6400 | 4.7266 | - | - | - | - | - | |
|
| 0.3729 | 6500 | 4.6452 | - | - | - | - | - | |
|
| 0.3786 | 6600 | 5.1431 | - | - | - | - | - | |
|
| 0.3843 | 6700 | 4.5343 | - | - | - | - | - | |
|
| 0.3901 | 6800 | 4.698 | - | - | - | - | - | |
|
| 0.3958 | 6900 | 4.6944 | - | - | - | - | - | |
|
| 0.4015 | 7000 | 4.6255 | - | - | - | - | - | |
|
| 0.4073 | 7100 | 5.0211 | - | - | - | - | - | |
|
| 0.4130 | 7200 | 4.6974 | - | - | - | - | - | |
|
| 0.4187 | 7300 | 4.9182 | - | - | - | - | - | |
|
| 0.4245 | 7400 | 4.652 | - | - | - | - | - | |
|
| 0.4302 | 7500 | 5.1015 | - | - | - | - | - | |
|
| 0.4360 | 7600 | 4.5249 | - | - | - | - | - | |
|
| 0.4417 | 7700 | 4.455 | - | - | - | - | - | |
|
| 0.4474 | 7800 | 4.8153 | - | - | - | - | - | |
|
| 0.4532 | 7900 | 4.7665 | - | - | - | - | - | |
|
| 0.4589 | 8000 | 4.3413 | - | - | - | - | - | |
|
| 0.4646 | 8100 | 4.4697 | - | - | - | - | - | |
|
| 0.4704 | 8200 | 4.6776 | - | - | - | - | - | |
|
| 0.4761 | 8300 | 4.2868 | - | - | - | - | - | |
|
| 0.4818 | 8400 | 4.7052 | - | - | - | - | - | |
|
| 0.4876 | 8500 | 4.4721 | - | - | - | - | - | |
|
| 0.4933 | 8600 | 4.6926 | - | - | - | - | - | |
|
| 0.4991 | 8700 | 4.9891 | - | - | - | - | - | |
|
| 0.5048 | 8800 | 4.4837 | - | - | - | - | - | |
|
| 0.5105 | 8900 | 4.8127 | - | - | - | - | - | |
|
| 0.5163 | 9000 | 4.3438 | - | - | - | - | - | |
|
| 0.5220 | 9100 | 4.4743 | - | - | - | - | - | |
|
| 0.5277 | 9200 | 4.6879 | - | - | - | - | - | |
|
| 0.5335 | 9300 | 4.3593 | - | - | - | - | - | |
|
| 0.5392 | 9400 | 4.3023 | - | - | - | - | - | |
|
| 0.5449 | 9500 | 4.8188 | - | - | - | - | - | |
|
| 0.5507 | 9600 | 4.6142 | - | - | - | - | - | |
|
| 0.5564 | 9700 | 4.7679 | - | - | - | - | - | |
|
| 0.5622 | 9800 | 4.6224 | - | - | - | - | - | |
|
| 0.5679 | 9900 | 4.9154 | - | - | - | - | - | |
|
| 0.5736 | 10000 | 4.7557 | - | - | - | - | - | |
|
| 0.5794 | 10100 | 4.6395 | - | - | - | - | - | |
|
| 0.5851 | 10200 | 4.7977 | - | - | - | - | - | |
|
| 0.5908 | 10300 | 4.915 | - | - | - | - | - | |
|
| 0.5966 | 10400 | 4.4854 | - | - | - | - | - | |
|
| 0.6023 | 10500 | 4.3973 | - | - | - | - | - | |
|
| 0.6080 | 10600 | 4.6964 | - | - | - | - | - | |
|
| 0.6138 | 10700 | 4.8853 | - | - | - | - | - | |
|
| 0.6195 | 10800 | 4.786 | - | - | - | - | - | |
|
| 0.6253 | 10900 | 4.5482 | - | - | - | - | - | |
|
| 0.6310 | 11000 | 4.4857 | - | - | - | - | - | |
|
| 0.6367 | 11100 | 4.7415 | - | - | - | - | - | |
|
| 0.6425 | 11200 | 4.2596 | - | - | - | - | - | |
|
| 0.6482 | 11300 | 4.8578 | - | - | - | - | - | |
|
| 0.6539 | 11400 | 4.5471 | - | - | - | - | - | |
|
| 0.6597 | 11500 | 4.8337 | - | - | - | - | - | |
|
| 0.6654 | 11600 | 4.2244 | - | - | - | - | - | |
|
| 0.6711 | 11700 | 4.9619 | - | - | - | - | - | |
|
| 0.6769 | 11800 | 4.9369 | - | - | - | - | - | |
|
| 0.6826 | 11900 | 4.2697 | - | - | - | - | - | |
|
| 0.6883 | 12000 | 4.2711 | - | - | - | - | - | |
|
| 0.6941 | 12100 | 4.6396 | - | - | - | - | - | |
|
| 0.6998 | 12200 | 4.5626 | - | - | - | - | - | |
|
| 0.7056 | 12300 | 4.5767 | - | - | - | - | - | |
|
| 0.7113 | 12400 | 4.6449 | - | - | - | - | - | |
|
| 0.7170 | 12500 | 4.4217 | - | - | - | - | - | |
|
| 0.7228 | 12600 | 4.0203 | - | - | - | - | - | |
|
| 0.7285 | 12700 | 4.5381 | - | - | - | - | - | |
|
| 0.7342 | 12800 | 4.5865 | - | - | - | - | - | |
|
| 0.7400 | 12900 | 4.4203 | - | - | - | - | - | |
|
| 0.7457 | 13000 | 4.3761 | - | - | - | - | - | |
|
| 0.7514 | 13100 | 4.093 | - | - | - | - | - | |
|
| 0.7572 | 13200 | 5.9235 | - | - | - | - | - | |
|
| 0.7629 | 13300 | 5.4098 | - | - | - | - | - | |
|
| 0.7687 | 13400 | 5.3079 | - | - | - | - | - | |
|
| 0.7744 | 13500 | 5.0946 | - | - | - | - | - | |
|
| 0.7801 | 13600 | 4.7098 | - | - | - | - | - | |
|
| 0.7859 | 13700 | 4.9471 | - | - | - | - | - | |
|
| 0.7916 | 13800 | 4.5742 | - | - | - | - | - | |
|
| 0.7973 | 13900 | 4.6178 | - | - | - | - | - | |
|
| 0.8031 | 14000 | 4.4516 | - | - | - | - | - | |
|
| 0.8088 | 14100 | 4.429 | - | - | - | - | - | |
|
| 0.8145 | 14200 | 4.3812 | - | - | - | - | - | |
|
| 0.8203 | 14300 | 4.3739 | - | - | - | - | - | |
|
| 0.8260 | 14400 | 4.3821 | - | - | - | - | - | |
|
| 0.8318 | 14500 | 4.4396 | - | - | - | - | - | |
|
| 0.8375 | 14600 | 4.2667 | - | - | - | - | - | |
|
| 0.8432 | 14700 | 4.1963 | - | - | - | - | - | |
|
| 0.8490 | 14800 | 4.1298 | - | - | - | - | - | |
|
| 0.8547 | 14900 | 4.1843 | - | - | - | - | - | |
|
| 0.8604 | 15000 | 4.0735 | - | - | - | - | - | |
|
| 0.8662 | 15100 | 3.9319 | - | - | - | - | - | |
|
| 0.8719 | 15200 | 4.1544 | - | - | - | - | - | |
|
| 0.8776 | 15300 | 4.105 | - | - | - | - | - | |
|
| 0.8834 | 15400 | 4.014 | - | - | - | - | - | |
|
| 0.8891 | 15500 | 4.0345 | - | - | - | - | - | |
|
| 0.8949 | 15600 | 3.9127 | - | - | - | - | - | |
|
| 0.9006 | 15700 | 4.1002 | - | - | - | - | - | |
|
| 0.9063 | 15800 | 3.8564 | - | - | - | - | - | |
|
| 0.9121 | 15900 | 3.9297 | - | - | - | - | - | |
|
| 0.9178 | 16000 | 3.8487 | - | - | - | - | - | |
|
| 0.9235 | 16100 | 3.7099 | - | - | - | - | - | |
|
| 0.9293 | 16200 | 3.8545 | - | - | - | - | - | |
|
| 0.9350 | 16300 | 3.8122 | - | - | - | - | - | |
|
| 0.9407 | 16400 | 3.8951 | - | - | - | - | - | |
|
| 0.9465 | 16500 | 3.6996 | - | - | - | - | - | |
|
| 0.9522 | 16600 | 3.9081 | - | - | - | - | - | |
|
| 0.9580 | 16700 | 3.8603 | - | - | - | - | - | |
|
| 0.9637 | 16800 | 3.8534 | - | - | - | - | - | |
|
| 0.9694 | 16900 | 3.8145 | - | - | - | - | - | |
|
| 0.9752 | 17000 | 3.9858 | - | - | - | - | - | |
|
| 0.9809 | 17100 | 3.8224 | - | - | - | - | - | |
|
| 0.9866 | 17200 | 3.7469 | - | - | - | - | - | |
|
| 0.9924 | 17300 | 3.9066 | - | - | - | - | - | |
|
| 0.9981 | 17400 | 3.6754 | - | - | - | - | - | |
|
| 1.0 | 17433 | - | 0.6795 | 0.6817 | 0.6847 | 0.6691 | 0.6873 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.29.3 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |