Entailment / README.md
NorGLM's picture
Update README.md
fa143a6 verified
metadata
license: cc-by-sa-4.0
language:
  - 'no'
pipeline_tag: text-classification

The Entailment Model is a pre-trained classifier to generate Entailment score for fact verification purpose.

Specifically, we fine-tune NorBERT on a collection of machine translated VitaminC dataset which is designed to determine whether the evidence supports assumption and is suitable for training a model on whether the given context entails the generated texts. Then, we employ the fine-tuned model as our Entailment model.

Prompt format:

{article}[SEP]{positive_sample}

Inference format:

{article}[SEP]{generated_text}

Run the Model

import torch
from transformers import AutoTokenizer, BertForSequenceClassification

model_id = "NorGLM/Entailment"
tokenizer = AutoTokenizer.from_pretrained(model_id, fast_tokenizer=True)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})

model = BertForSequenceClassification.from_pretrained(
    model_id
)

Inference Example

from torch.utils.data import TensorDataset, DataLoader

def entailment_score(texts, references, generated_texts):
    # Entailment: 1, Contradict: 0, Neutral: 2
    # concatinate news articles and generated summaries as input
    input_texts = [t + ' [SEP] '+ g for t,g in zip(texts, generated_texts)]
    # Set the maximum sequence length according to NorBERT config.
    MAX_LEN = 512
    batch_size = 16

    test_inputs = tokenizer(text=input_texts, add_special_tokens=True, return_attention_mask = True, return_tensors="pt", padding=True, truncation=True,  max_length=MAX_LEN)
    validation_data = TensorDataset(test_inputs['input_ids'],test_inputs['attention_mask'])
    validation_dataloader = DataLoader(validation_data,batch_size=batch_size)

    model.eval()

    results = []
    num_batches = 1
    for batch in validation_dataloader:
        # Add batch to GPU
        batch = tuple(t.to(device) for t in batch)
        # Unpack the inputs from our dataloader
        b_input_ids, b_input_mask = batch
        # Telling the model not to compute or store gradients, saving memory and speeding up validation
        with torch.no_grad():
            # Forward pass, calculate logit predictions
            logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)

        # Move logits and labels to CPU
        logits = logits[0].to('cpu').numpy()
        pred_flat = np.argmax(logits, axis=1).flatten()

        results.extend(pred_flat)
        num_batches += 1

    ent_ratio = results.count(1) / float(len(results))
    neu_ratio = results.count(2) / float(len(results))
    con_ratio = results.count(0) / float(len(results))
    print("Entailment ratio: {}; Neutral ratio: {}; Contradict ratio: {}.".format(ent_ratio, neu_ratio, con_ratio))
    return ent_ratio, neu_ratio, con_ratio

# load evaluation text
eva_file_name = <input csv file for evaluation>
eval_df = pd.read_csv(eva_file_name)

remove_str = 'Token indices sequence length is longer than 2048.'
eval_df = eval_df[eval_df!=remove_str]
eval_df = eval_df.dropna()
references = eval_df['positive_sample'].to_list()
hypo_list = eval_df['generated_text'].to_list()
articles = eval_df['article'].to_list()
ent_ratio, neu_ratio, con_ratio = entailment_score(articles, references, hypo_list)

Citation Information

If you feel our work is helpful, please cite our paper:

@article{liu2023nlebench+,
  title={NLEBench+ NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian},
  author={Liu, Peng and Zhang, Lemei and Farup, Terje Nissen and Lauvrak, Even W and Ingvaldsen, Jon Espen and Eide, Simen and Gulla, Jon Atle and Yang, Zhirong},
  journal={arXiv preprint arXiv:2312.01314},
  year={2023}
}