metadata
license: cc-by-sa-4.0
language:
- 'no'
pipeline_tag: text-classification
The Entailment Model is a pre-trained classifier to generate Entailment score for fact verification purpose.
Specifically, we fine-tune NorBERT on a collection of machine translated VitaminC dataset which is designed to determine whether the evidence supports assumption and is suitable for training a model on whether the given context entails the generated texts. Then, we employ the fine-tuned model as our Entailment model.
Prompt format:
{article}[SEP]{positive_sample}
Inference format:
{article}[SEP]{generated_text}
Run the Model
import torch
from transformers import AutoTokenizer, BertForSequenceClassification
model_id = "NorGLM/Entailment"
tokenizer = AutoTokenizer.from_pretrained(model_id, fast_tokenizer=True)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model = BertForSequenceClassification.from_pretrained(
model_id
)
Inference Example
from torch.utils.data import TensorDataset, DataLoader
def entailment_score(texts, references, generated_texts):
# Entailment: 1, Contradict: 0, Neutral: 2
# concatinate news articles and generated summaries as input
input_texts = [t + ' [SEP] '+ g for t,g in zip(texts, generated_texts)]
# Set the maximum sequence length according to NorBERT config.
MAX_LEN = 512
batch_size = 16
test_inputs = tokenizer(text=input_texts, add_special_tokens=True, return_attention_mask = True, return_tensors="pt", padding=True, truncation=True, max_length=MAX_LEN)
validation_data = TensorDataset(test_inputs['input_ids'],test_inputs['attention_mask'])
validation_dataloader = DataLoader(validation_data,batch_size=batch_size)
model.eval()
results = []
num_batches = 1
for batch in validation_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask = batch
# Telling the model not to compute or store gradients, saving memory and speeding up validation
with torch.no_grad():
# Forward pass, calculate logit predictions
logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
# Move logits and labels to CPU
logits = logits[0].to('cpu').numpy()
pred_flat = np.argmax(logits, axis=1).flatten()
results.extend(pred_flat)
num_batches += 1
ent_ratio = results.count(1) / float(len(results))
neu_ratio = results.count(2) / float(len(results))
con_ratio = results.count(0) / float(len(results))
print("Entailment ratio: {}; Neutral ratio: {}; Contradict ratio: {}.".format(ent_ratio, neu_ratio, con_ratio))
return ent_ratio, neu_ratio, con_ratio
# load evaluation text
eva_file_name = <input csv file for evaluation>
eval_df = pd.read_csv(eva_file_name)
remove_str = 'Token indices sequence length is longer than 2048.'
eval_df = eval_df[eval_df!=remove_str]
eval_df = eval_df.dropna()
references = eval_df['positive_sample'].to_list()
hypo_list = eval_df['generated_text'].to_list()
articles = eval_df['article'].to_list()
ent_ratio, neu_ratio, con_ratio = entailment_score(articles, references, hypo_list)
Citation Information
If you feel our work is helpful, please cite our paper:
@article{liu2023nlebench+,
title={NLEBench+ NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian},
author={Liu, Peng and Zhang, Lemei and Farup, Terje Nissen and Lauvrak, Even W and Ingvaldsen, Jon Espen and Eide, Simen and Gulla, Jon Atle and Yang, Zhirong},
journal={arXiv preprint arXiv:2312.01314},
year={2023}
}