File size: 1,621 Bytes
f4ec5b0 eae2cda f4ec5b0 45a7bec f4ec5b0 a9521f8 19cccb6 0f0fe2f 7d1b6e1 c67afbd a9521f8 7d1b6e1 a9521f8 7d1b6e1 dc4f604 7d1b6e1 bbb0aa9 dc4f604 a9521f8 dc4f604 a9521f8 dc4f604 a9521f8 dc4f604 7d1b6e1 3388311 a9521f8 f4ec5b0 610f43c 6b1c941 29c887d 6b1c941 066b9a1 6b1c941 f4ec5b0 b6aa22e f4ec5b0 6b1c941 a9521f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
pipeline_tag: image-segmentation
tags:
- BEN
- background-remove
- mask-generation
- Dichotomous image segmentation
- background remove
- foreground
- background
---
# BEN - Background Erase Network (Beta Base Model)
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.
- MADE IN AMERICA
## Quick Start Code (Inside Cloned Repo)
```python
import model
from PIL import Image
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
file = "./image.png" # input image
model = model.BEN_Base().to(device).eval() #init pipeline
model.loadcheckpoints("./BEN_Base.pth")
image = Image.open(file)
with torch.no_grad():
mask, foreground = model.inference(image)
mask.save("./mask.png")
foreground.save("./foreground.png")
```
# BEN SOA Benchmarks on Disk 5k Eval
![Demo Results](demo.jpg)
### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
- MAE: 0.0283
- DICE: 0.8976
- IOU: 0.8430
- BER: 0.0542
- ACC: 0.9725
### BEN_Base (94 million parameters):
- MAE: 0.0331
- DICE: 0.8743
- IOU: 0.8301
- BER: 0.0560
- ACC: 0.9700
### MVANet (old SOTA):
- MAE: 0.0353
- DICE: 0.8676
- IOU: 0.8104
- BER: 0.0639
- ACC: 0.9660
### BiRefNet(not tested in house):
- MAE: 0.038
### InSPyReNet (not tested in house):
- MAE: 0.042
## Features
- Background removal from images
- Generates both binary mask and foreground image
- CUDA support for GPU acceleration
- Simple API for easy integration
## Installation
1. Clone Repo
2. Install requirements.txt
|