File size: 1,621 Bytes
f4ec5b0
 
eae2cda
 
 
 
 
 
 
 
 
f4ec5b0
 
45a7bec
f4ec5b0
a9521f8
19cccb6
0f0fe2f
7d1b6e1
c67afbd
a9521f8
7d1b6e1
a9521f8
7d1b6e1
 
 
dc4f604
7d1b6e1
 
bbb0aa9
dc4f604
a9521f8
dc4f604
a9521f8
dc4f604
a9521f8
 
dc4f604
7d1b6e1
 
3388311
a9521f8
 
f4ec5b0
610f43c
 
 
6b1c941
 
 
 
 
 
 
29c887d
6b1c941
 
 
 
 
 
066b9a1
6b1c941
 
 
 
 
f4ec5b0
b6aa22e
 
 
 
 
 
 
 
 
 
f4ec5b0
 
 
 
 
 
 
6b1c941
a9521f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
pipeline_tag: image-segmentation
tags:
- BEN
- background-remove
- mask-generation
- Dichotomous image segmentation
- background remove
- foreground
- background
---

# BEN - Background Erase Network (Beta Base Model)

BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image.

- MADE IN AMERICA

## Quick Start Code (Inside Cloned Repo)

```python
import model
from PIL import Image
import torch


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

file = "./image.png" # input image

model = model.BEN_Base().to(device).eval() #init pipeline

model.loadcheckpoints("./BEN_Base.pth")
image = Image.open(file)
with torch.no_grad():
    mask, foreground = model.inference(image)

mask.save("./mask.png")
foreground.save("./foreground.png")
```

# BEN SOA Benchmarks on Disk 5k Eval

![Demo Results](demo.jpg)


### BEN_Base + BEN_Refiner (commercial model please contact us for more information):
- MAE: 0.0283
- DICE: 0.8976
- IOU: 0.8430
- BER: 0.0542
- ACC: 0.9725

### BEN_Base (94 million parameters):
- MAE: 0.0331
- DICE: 0.8743
- IOU: 0.8301
- BER: 0.0560
- ACC: 0.9700

### MVANet (old SOTA):
- MAE: 0.0353
- DICE: 0.8676
- IOU: 0.8104
- BER: 0.0639
- ACC: 0.9660


### BiRefNet(not tested in house):
- MAE: 0.038


### InSPyReNet (not tested in house):
- MAE: 0.042



## Features
- Background removal from images
- Generates both binary mask and foreground image
- CUDA support for GPU acceleration
- Simple API for easy integration

## Installation
1. Clone Repo
2. Install requirements.txt