|
--- |
|
license: apache-2.0 |
|
pipeline_tag: image-segmentation |
|
tags: |
|
- BEN |
|
- background-remove |
|
- mask-generation |
|
- Dichotomous image segmentation |
|
- background remove |
|
- foreground |
|
- background |
|
--- |
|
|
|
# BEN - Background Erase Network (Beta Base Model) |
|
|
|
BEN is a deep learning model designed to automatically remove backgrounds from images, producing both a mask and a foreground image. |
|
|
|
- MADE IN AMERICA |
|
|
|
## Quick Start Code (Inside Cloned Repo) |
|
|
|
```python |
|
import model |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
file = "./image.png" # input image |
|
|
|
model = model.BEN_Base().to(device).eval() #init pipeline |
|
|
|
model.loadcheckpoints("./BEN_Base.pth") |
|
image = Image.open(file) |
|
with torch.no_grad(): |
|
mask, foreground = model.inference(image) |
|
|
|
mask.save("./mask.png") |
|
foreground.save("./foreground.png") |
|
``` |
|
|
|
# BEN SOA Benchmarks on Disk 5k Eval |
|
|
|
![Demo Results](demo.jpg) |
|
|
|
|
|
### BEN_Base + BEN_Refiner (commercial model please contact us for more information): |
|
- MAE: 0.0283 |
|
- DICE: 0.8976 |
|
- IOU: 0.8430 |
|
- BER: 0.0542 |
|
- ACC: 0.9725 |
|
|
|
### BEN_Base (94 million parameters): |
|
- MAE: 0.0331 |
|
- DICE: 0.8743 |
|
- IOU: 0.8301 |
|
- BER: 0.0560 |
|
- ACC: 0.9700 |
|
|
|
### MVANet (old SOTA): |
|
- MAE: 0.0353 |
|
- DICE: 0.8676 |
|
- IOU: 0.8104 |
|
- BER: 0.0639 |
|
- ACC: 0.9660 |
|
|
|
|
|
### BiRefNet(not tested in house): |
|
- MAE: 0.038 |
|
|
|
|
|
### InSPyReNet (not tested in house): |
|
- MAE: 0.042 |
|
|
|
|
|
|
|
## Features |
|
- Background removal from images |
|
- Generates both binary mask and foreground image |
|
- CUDA support for GPU acceleration |
|
- Simple API for easy integration |
|
|
|
## Installation |
|
1. Clone Repo |
|
2. Install requirements.txt |
|
|