|
--- |
|
license_name: tongyi-qianwen-research |
|
license_link: https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE |
|
tags: |
|
- code |
|
pipeline_tag: text-generation |
|
license: other |
|
base_model: NTQAI/Nxcode-CQ-7B-orpo |
|
--- |
|
|
|
# QuantFactory/Nxcode-CQ-7B-orpo-GGUF |
|
This is quantized version of [NTQAI/Nxcode-CQ-7B-orpo](https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo) created suing llama.cpp |
|
|
|
## Model Description |
|
|
|
Nxcode-CQ-7B-orpo is an [Monolithic Preference Optimization without Reference Model](https://arxiv.org/abs/2403.07691) fine-tune of Qwen/CodeQwen1.5-7B on 100k samples of high-quality ranking data. |
|
|
|
## [Evalplus](https://github.com/evalplus/evalplus) |
|
|
|
| EvalPlus | pass@1 | |
|
| --- | --- | |
|
| HumanEval | 86.6 | |
|
| HumanEval+ | 83.5 | |
|
| MBPP(v0.2.0) | 82.3 | |
|
| MBPP+(v0.2.0) | 70.4 | |
|
|
|
We use a simple template to generate the solution for evalplus: |
|
|
|
```python |
|
"Complete the following Python function:\n{prompt}" |
|
``` |
|
|
|
[Evalplus Leaderboard](https://evalplus.github.io/leaderboard.html) |
|
| Models | HumanEval | HumanEval+| |
|
|------ | ------ | ------ | |
|
| GPT-4-Turbo (April 2024)| 90.2| 86.6| |
|
| GPT-4 (May 2023)| 88.4| 81.17| |
|
| GPT-4-Turbo (Nov 2023)| 85.4| 79.3| |
|
| CodeQwen1.5-7B-Chat| 83.5| 78.7| |
|
| claude-3-opus (Mar 2024)| 82.9| 76.8| |
|
| DeepSeek-Coder-33B-instruct| 81.1| 75.0| |
|
| WizardCoder-33B-V1.1| 79.9| 73.2| |
|
| OpenCodeInterpreter-DS-33B| 79.3| 73.8| |
|
| speechless-codellama-34B-v2.0| 77.4| 72| |
|
| GPT-3.5-Turbo (Nov 2023)| 76.8| 70.7| |
|
| Llama3-70B-instruct| 76.2| 70.7| |
|
|
|
## Bigcode Leaderboard |
|
|
|
[Bigcode Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard) |
|
|
|
**09/05/2024** |
|
|
|
Top 1 average score. |
|
|
|
Top 2 winrate. |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5ee1b417636bdb3834e2da19/OQonD6a7aNjnN9SsTkFp-.png) |
|
|
|
|
|
## Quickstart |
|
|
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. You should upgrade the transformers if you receive an error when loading the tokenizer |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"NTQAI/Nxcode-CQ-7B-orpo", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo") |
|
|
|
prompt = """Complete the following Python function: |
|
from typing import List |
|
|
|
|
|
def has_close_elements(numbers: List[float], threshold: float) -> bool: |
|
""" Check if in given list of numbers, are any two numbers closer to each other than |
|
given threshold. |
|
>>> has_close_elements([1.0, 2.0, 3.0], 0.5) |
|
False |
|
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) |
|
True |
|
""" |
|
""" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
res = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) |
|
|
|
``` |