Text Generation
GGUF
code
Inference Endpoints
conversational
munish0838's picture
Create README.md
86f651f verified
|
raw
history blame
3.14 kB
---
license_name: tongyi-qianwen-research
license_link: https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE
tags:
- code
pipeline_tag: text-generation
license: other
base_model: NTQAI/Nxcode-CQ-7B-orpo
---
# QuantFactory/Nxcode-CQ-7B-orpo-GGUF
This is quantized version of [NTQAI/Nxcode-CQ-7B-orpo](https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo) created suing llama.cpp
## Model Description
Nxcode-CQ-7B-orpo is an [Monolithic Preference Optimization without Reference Model](https://arxiv.org/abs/2403.07691) fine-tune of Qwen/CodeQwen1.5-7B on 100k samples of high-quality ranking data.
## [Evalplus](https://github.com/evalplus/evalplus)
| EvalPlus | pass@1 |
| --- | --- |
| HumanEval | 86.6 |
| HumanEval+ | 83.5 |
| MBPP(v0.2.0) | 82.3 |
| MBPP+(v0.2.0) | 70.4 |
We use a simple template to generate the solution for evalplus:
```python
"Complete the following Python function:\n{prompt}"
```
[Evalplus Leaderboard](https://evalplus.github.io/leaderboard.html)
| Models | HumanEval | HumanEval+|
|------ | ------ | ------ |
| GPT-4-Turbo (April 2024)| 90.2| 86.6|
| GPT-4 (May 2023)| 88.4| 81.17|
| GPT-4-Turbo (Nov 2023)| 85.4| 79.3|
| CodeQwen1.5-7B-Chat| 83.5| 78.7|
| claude-3-opus (Mar 2024)| 82.9| 76.8|
| DeepSeek-Coder-33B-instruct| 81.1| 75.0|
| WizardCoder-33B-V1.1| 79.9| 73.2|
| OpenCodeInterpreter-DS-33B| 79.3| 73.8|
| speechless-codellama-34B-v2.0| 77.4| 72|
| GPT-3.5-Turbo (Nov 2023)| 76.8| 70.7|
| Llama3-70B-instruct| 76.2| 70.7|
## Bigcode Leaderboard
[Bigcode Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)
**09/05/2024**
Top 1 average score.
Top 2 winrate.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5ee1b417636bdb3834e2da19/OQonD6a7aNjnN9SsTkFp-.png)
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. You should upgrade the transformers if you receive an error when loading the tokenizer
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"NTQAI/Nxcode-CQ-7B-orpo",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo")
prompt = """Complete the following Python function:
from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
"""
messages = [
{"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
res = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
```