|
|
|
--- |
|
|
|
library_name: transformers |
|
license: gemma |
|
base_model: jeiku/Dante_9B |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputs/out |
|
results: [] |
|
|
|
--- |
|
|
|
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/Virgil_9B-GGUF |
|
This is quantized version of [FourOhFour/Virgil_9B](https://huggingface.co/FourOhFour/Virgil_9B) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: jeiku/Dante_9B |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: FourOhFour/RP_Phase |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
chat_template: chatml |
|
|
|
val_set_size: 0.0025 |
|
output_dir: ./outputs/out |
|
|
|
adapter: |
|
lora_r: |
|
lora_alpha: |
|
lora_dropout: |
|
lora_target_linear: |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: false |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: false |
|
|
|
wandb_project: chatml9B |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: chatml9B |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 32 |
|
micro_batch_size: 1 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000008 |
|
weight_decay: 0.05 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_ratio: 0.1 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 2 |
|
|
|
debug: |
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
fsdp: |
|
fsdp_config: |
|
|
|
special_tokens: |
|
pad_token: <pad> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out |
|
|
|
This model is a fine-tuned version of [jeiku/Dante_9B](https://huggingface.co/jeiku/Dante_9B) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7075 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 14 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.7474 | 0.0135 | 1 | 1.7996 | |
|
| 1.6968 | 0.2570 | 19 | 0.9551 | |
|
| 1.6583 | 0.5139 | 38 | 0.8805 | |
|
| 1.5418 | 0.7709 | 57 | 0.7926 | |
|
| 1.3997 | 1.0271 | 76 | 0.7500 | |
|
| 1.3921 | 1.2847 | 95 | 0.7168 | |
|
| 1.4141 | 1.5424 | 114 | 0.7155 | |
|
| 1.4139 | 1.8 | 133 | 0.7075 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.0 |
|
|
|
|