File size: 3,690 Bytes
c8fe741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7575a
c8fe741
 
 
12c8ba0
c8fe741
 
ef7575a
c8fe741
ef7575a
c8fe741
ef7575a
c8fe741
 
ef7575a
c8fe741
 
 
 
 
ef7575a
ca1429f
ef7575a
a66c39d
 
ef7575a
c8fe741
ef7575a
c8fe741
 
ef7575a
c8fe741
a66c39d
 
 
 
c8fe741
 
ef7575a
c8fe741
a66c39d
 
c8fe741
 
 
 
ef7575a
c8fe741
ef7575a
c8fe741
ef7575a
c8fe741
 
 
 
 
 
ef7575a
ca1429f
ef7575a
c8fe741
ef7575a
12c8ba0
 
ef7575a
c8fe741
a66c39d
ef7575a
c8fe741
ef7575a
c8fe741
 
 
12c8ba0
 
 
 
 
c8fe741
ef7575a
c8fe741
 
 
12c8ba0
 
 
ef7575a
12c8ba0
 
 
c8fe741
12c8ba0
c8fe741
ef7575a
12c8ba0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
language: ta
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Rajaram1996/wav2vec2-large-xlsr-tamil
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice ta
      type: common_voice
      args: ta 
    metrics:
       - name: Test WER
         type: wer
         value: 69.76
---
# Wav2Vec2-Large-XLSR-53-tamil

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice)

When using this model, make sure that your speech input is sampled at 16kHz.

## Usage
The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```

## Evaluation

The model can be evaluated as follows on the {language} test data of Common Voice.

```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "ta", split="test")

wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("Rajaram1996/wav2vec2-large-xlsr-53-tamil")

model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]'

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 69.76 %