metadata
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:51741
- loss:CoSENTLoss
base_model: RomainDarous/pre_training_original_model
widget:
- source_sentence: Starsza para azjatycka pozuje z noworodkiem przy stole obiadowym.
sentences:
- Koszykarz ma zamiar zdobyć punkty dla swojej drużyny.
- Grupa starszych osób pozuje wokół stołu w jadalni.
- Możliwe, że układ słoneczny taki jak nasz może istnieć poza galaktyką.
- source_sentence: >-
Englisch arbeitet überall mit Menschen, die Dinge kaufen und verkaufen,
und in der Gastfreundschaft und im Tourismusgeschäft.
sentences:
- >-
Ich bin in Maharashtra (einschließlich Mumbai) und Andhra Pradesh
herumgereist, und ich hatte kein Problem damit, nur mit Englisch
auszukommen.
- >-
Ein griechischsprachiger Sklave (δούλος, doulos) würde seinen Herrn,
glaube ich, κύριος nennen (translit: kurios; Herr, Herr, Herr, Herr;
Vokativform: κύριε).
- Das Paar lag auf dem Bett.
- source_sentence: >-
Si vous vous comprenez et comprenez votre ennemi, vous aurez beaucoup plus
de chances de gagner n'importe quelle bataille.
sentences:
- >-
Outre les probabilités de gagner une bataille théorique, cette citation
a une autre signification : l'importance de connaître/comprendre les
autres.
- Une femme et un chien se promènent ensemble.
- Un homme joue de la guitare.
- source_sentence: Un homme joue de la harpe.
sentences:
- Une femme joue de la guitare.
- une femme a un enfant.
- Un groupe de personnes est debout et assis sur le sol la nuit.
- source_sentence: Dois cães a lutar na neve.
sentences:
- Dois cães brincam na neve.
- Pode sempre perguntar, então é a escolha do autor a aceitar ou não.
- Um gato está a caminhar sobre chão de madeira dura.
datasets:
- PhilipMay/stsb_multi_mt
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on RomainDarous/pre_training_original_model
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts eval
type: sts-eval
metrics:
- type: pearson_cosine
value: 0.649351613026743
name: Pearson Cosine
- type: spearman_cosine
value: 0.6712113629733555
name: Spearman Cosine
- type: pearson_cosine
value: 0.6648874938903813
name: Pearson Cosine
- type: spearman_cosine
value: 0.6859979455545288
name: Spearman Cosine
- type: pearson_cosine
value: 0.6574990404767099
name: Pearson Cosine
- type: spearman_cosine
value: 0.6819347305734045
name: Spearman Cosine
- type: pearson_cosine
value: 0.6482851200513846
name: Pearson Cosine
- type: spearman_cosine
value: 0.6739057551228634
name: Spearman Cosine
- type: pearson_cosine
value: 0.657747388798702
name: Pearson Cosine
- type: spearman_cosine
value: 0.6797522820481435
name: Spearman Cosine
- type: pearson_cosine
value: 0.580138787555855
name: Pearson Cosine
- type: spearman_cosine
value: 0.6025843591291092
name: Spearman Cosine
- type: pearson_cosine
value: 0.6445711160678915
name: Pearson Cosine
- type: spearman_cosine
value: 0.6738244742184887
name: Spearman Cosine
- type: pearson_cosine
value: 0.6060638359389463
name: Pearson Cosine
- type: spearman_cosine
value: 0.6210827296807453
name: Spearman Cosine
- type: pearson_cosine
value: 0.6672294139281439
name: Pearson Cosine
- type: spearman_cosine
value: 0.6864882079409924
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.6279093972489541
name: Pearson Cosine
- type: spearman_cosine
value: 0.6320355986028895
name: Spearman Cosine
- type: pearson_cosine
value: 0.6433522116833627
name: Pearson Cosine
- type: spearman_cosine
value: 0.658000076471118
name: Spearman Cosine
- type: pearson_cosine
value: 0.6271929274305698
name: Pearson Cosine
- type: spearman_cosine
value: 0.6229896619978917
name: Spearman Cosine
- type: pearson_cosine
value: 0.6391062028706688
name: Pearson Cosine
- type: spearman_cosine
value: 0.6417698712729121
name: Spearman Cosine
- type: pearson_cosine
value: 0.622947898324511
name: Pearson Cosine
- type: spearman_cosine
value: 0.6179788172853071
name: Spearman Cosine
- type: pearson_cosine
value: 0.5903164175964553
name: Pearson Cosine
- type: spearman_cosine
value: 0.5887507390354803
name: Spearman Cosine
- type: pearson_cosine
value: 0.640080846863563
name: Pearson Cosine
- type: spearman_cosine
value: 0.6391082728350455
name: Spearman Cosine
- type: pearson_cosine
value: 0.6172821161239198
name: Pearson Cosine
- type: spearman_cosine
value: 0.6180296923884917
name: Spearman Cosine
- type: pearson_cosine
value: 0.6607896399210559
name: Pearson Cosine
- type: spearman_cosine
value: 0.6616750284666137
name: Spearman Cosine
SentenceTransformer based on RomainDarous/pre_training_original_model
This is a sentence-transformers model finetuned from RomainDarous/pre_training_original_model on the multi_stsb_de, multi_stsb_es, multi_stsb_fr, multi_stsb_it, multi_stsb_nl, multi_stsb_pl, multi_stsb_pt, multi_stsb_ru and multi_stsb_zh datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: RomainDarous/pre_training_original_model
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Languages: de, en, es, fr, it, nl, pl, pt, ru, zh
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/multists_finetuned_original_model")
# Run inference
sentences = [
'Dois cães a lutar na neve.',
'Dois cães brincam na neve.',
'Pode sempre perguntar, então é a escolha do autor a aceitar ou não.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-eval
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-eval | sts-test |
---|---|---|
pearson_cosine | 0.6494 | 0.6608 |
spearman_cosine | 0.6712 | 0.6617 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6649 |
spearman_cosine | 0.686 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6575 |
spearman_cosine | 0.6819 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6483 |
spearman_cosine | 0.6739 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6577 |
spearman_cosine | 0.6798 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5801 |
spearman_cosine | 0.6026 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6446 |
spearman_cosine | 0.6738 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6061 |
spearman_cosine | 0.6211 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6672 |
spearman_cosine | 0.6865 |
Training Details
Training Datasets
multi_stsb_de
- Dataset: multi_stsb_de at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 12.05 tokens
- max: 37 tokens
- min: 6 tokens
- mean: 12.01 tokens
- max: 37 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Ein Flugzeug hebt gerade ab.
Ein Flugzeug hebt gerade ab.
1.0
Ein Mann spielt eine große Flöte.
Ein Mann spielt eine Flöte.
0.7599999904632568
Ein Mann streicht geriebenen Käse auf eine Pizza.
Ein Mann streicht geriebenen Käse auf eine ungekochte Pizza.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_es
- Dataset: multi_stsb_es at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.28 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 12.14 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Un avión está despegando.
Un avión está despegando.
1.0
Un hombre está tocando una gran flauta.
Un hombre está tocando una flauta.
0.7599999904632568
Un hombre está untando queso rallado en una pizza.
Un hombre está untando queso rallado en una pizza cruda.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_fr
- Dataset: multi_stsb_fr at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 12.47 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 12.37 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Un avion est en train de décoller.
Un avion est en train de décoller.
1.0
Un homme joue d'une grande flûte.
Un homme joue de la flûte.
0.7599999904632568
Un homme étale du fromage râpé sur une pizza.
Un homme étale du fromage râpé sur une pizza non cuite.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_it
- Dataset: multi_stsb_it at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.92 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 12.81 tokens
- max: 30 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Un aereo sta decollando.
Un aereo sta decollando.
1.0
Un uomo sta suonando un grande flauto.
Un uomo sta suonando un flauto.
0.7599999904632568
Un uomo sta spalmando del formaggio a pezzetti su una pizza.
Un uomo sta spalmando del formaggio a pezzetti su una pizza non cotta.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_nl
- Dataset: multi_stsb_nl at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 12.12 tokens
- max: 33 tokens
- min: 6 tokens
- mean: 12.04 tokens
- max: 30 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Er gaat een vliegtuig opstijgen.
Er gaat een vliegtuig opstijgen.
1.0
Een man speelt een grote fluit.
Een man speelt fluit.
0.7599999904632568
Een man smeert geraspte kaas op een pizza.
Een man strooit geraspte kaas op een ongekookte pizza.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pl
- Dataset: multi_stsb_pl at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 13.24 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 13.08 tokens
- max: 34 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Samolot wystartował.
Samolot wystartował.
1.0
Człowiek gra na dużym flecie.
Człowiek gra na flecie.
0.7599999904632568
Mężczyzna rozsiewa na pizzy rozdrobniony ser.
Mężczyzna rozsiewa rozdrobniony ser na niegotowanej pizzy.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pt
- Dataset: multi_stsb_pt at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 13.0 tokens
- max: 37 tokens
- min: 7 tokens
- mean: 12.99 tokens
- max: 34 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Um avião está a descolar.
Um avião aéreo está a descolar.
1.0
Um homem está a tocar uma grande flauta.
Um homem está a tocar uma flauta.
0.7599999904632568
Um homem está a espalhar queijo desfiado numa pizza.
Um homem está a espalhar queijo desfiado sobre uma pizza não cozida.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_ru
- Dataset: multi_stsb_ru at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 12.66 tokens
- max: 47 tokens
- min: 5 tokens
- mean: 12.67 tokens
- max: 36 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score Самолет взлетает.
Взлетает самолет.
1.0
Человек играет на большой флейте.
Человек играет на флейте.
0.7599999904632568
Мужчина разбрасывает сыр на пиццу.
Мужчина разбрасывает измельченный сыр на вареную пиццу.
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_zh
- Dataset: multi_stsb_zh at 3acaa3d
- Size: 5,749 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 12.55 tokens
- max: 37 tokens
- min: 6 tokens
- mean: 12.73 tokens
- max: 28 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence1 sentence2 score 一架飞机正在起飞。
一架飞机正在起飞。
1.0
一个男人正在吹一支大笛子。
一个人在吹笛子。
0.7599999904632568
一名男子正在比萨饼上涂抹奶酪丝。
一名男子正在将奶酪丝涂抹在未熟的披萨上。
0.7599999904632568
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Datasets
multi_stsb_de
- Dataset: multi_stsb_de at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 18.96 tokens
- max: 51 tokens
- min: 6 tokens
- mean: 19.01 tokens
- max: 55 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Ein Mann mit einem Schutzhelm tanzt.
Ein Mann mit einem Schutzhelm tanzt.
1.0
Ein kleines Kind reitet auf einem Pferd.
Ein Kind reitet auf einem Pferd.
0.949999988079071
Ein Mann verfüttert eine Maus an eine Schlange.
Der Mann füttert die Schlange mit einer Maus.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_es
- Dataset: multi_stsb_es at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 18.41 tokens
- max: 45 tokens
- min: 7 tokens
- mean: 18.24 tokens
- max: 51 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Un hombre con un casco está bailando.
Un hombre con un casco está bailando.
1.0
Un niño pequeño está montando a caballo.
Un niño está montando a caballo.
0.949999988079071
Un hombre está alimentando a una serpiente con un ratón.
El hombre está alimentando a la serpiente con un ratón.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_fr
- Dataset: multi_stsb_fr at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 19.77 tokens
- max: 50 tokens
- min: 6 tokens
- mean: 19.62 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Un homme avec un casque de sécurité est en train de danser.
Un homme portant un casque de sécurité est en train de danser.
1.0
Un jeune enfant monte à cheval.
Un enfant monte à cheval.
0.949999988079071
Un homme donne une souris à un serpent.
L'homme donne une souris au serpent.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_it
- Dataset: multi_stsb_it at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 19.05 tokens
- max: 48 tokens
- min: 7 tokens
- mean: 19.03 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Un uomo con l'elmetto sta ballando.
Un uomo che indossa un elmetto sta ballando.
1.0
Un bambino piccolo sta cavalcando un cavallo.
Un bambino sta cavalcando un cavallo.
0.949999988079071
Un uomo sta dando da mangiare un topo a un serpente.
L'uomo sta dando da mangiare un topo al serpente.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_nl
- Dataset: multi_stsb_nl at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 19.12 tokens
- max: 49 tokens
- min: 7 tokens
- mean: 18.95 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Een man met een helm is aan het dansen.
Een man met een helm is aan het dansen.
1.0
Een jong kind rijdt op een paard.
Een kind rijdt op een paard.
0.949999988079071
Een man voedt een muis aan een slang.
De man voert een muis aan de slang.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pl
- Dataset: multi_stsb_pl at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 21.6 tokens
- max: 58 tokens
- min: 7 tokens
- mean: 21.47 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Tańczy mężczyzna w twardym kapeluszu.
Tańczy mężczyzna w twardym kapeluszu.
1.0
Małe dziecko jedzie na koniu.
Dziecko jedzie na koniu.
0.949999988079071
Człowiek karmi węża myszką.
Ten człowiek karmi węża myszką.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_pt
- Dataset: multi_stsb_pt at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 19.26 tokens
- max: 48 tokens
- min: 7 tokens
- mean: 19.08 tokens
- max: 50 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Um homem de chapéu duro está a dançar.
Um homem com um capacete está a dançar.
1.0
Uma criança pequena está a montar a cavalo.
Uma criança está a montar a cavalo.
0.949999988079071
Um homem está a alimentar um rato a uma cobra.
O homem está a alimentar a cobra com um rato.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_ru
- Dataset: multi_stsb_ru at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 20.91 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 20.95 tokens
- max: 65 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score Человек в твердой шляпе танцует.
Мужчина в твердой шляпе танцует.
1.0
Маленький ребенок едет верхом на лошади.
Ребенок едет на лошади.
0.949999988079071
Мужчина кормит мышь змее.
Человек кормит змею мышью.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
multi_stsb_zh
- Dataset: multi_stsb_zh at 3acaa3d
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 19.81 tokens
- max: 53 tokens
- min: 5 tokens
- mean: 19.67 tokens
- max: 56 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 一个戴着硬帽子的人在跳舞。
一个戴着硬帽的人在跳舞。
1.0
一个小孩子在骑马。
一个孩子在骑马。
0.949999988079071
一个人正在用老鼠喂蛇。
那人正在给蛇喂老鼠。
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | multi stsb de loss | multi stsb es loss | multi stsb fr loss | multi stsb it loss | multi stsb nl loss | multi stsb pl loss | multi stsb pt loss | multi stsb ru loss | multi stsb zh loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | 3240 | 4.6594 | 4.6488 | 4.6520 | 4.6401 | 4.6637 | 4.6435 | 4.6943 | 4.6786 | 4.6902 | 4.6578 | 0.5620 | - |
2.0 | 6480 | 4.4285 | 4.6860 | 4.6755 | 4.6796 | 4.6655 | 4.6472 | 4.7655 | 4.6910 | 4.7783 | 4.6939 | 0.6592 | - |
3.0 | 9720 | 4.1541 | 4.9416 | 5.0391 | 4.9025 | 4.9229 | 4.9449 | 5.0618 | 5.0057 | 5.0001 | 4.9986 | 0.6764 | - |
4.0 | 12960 | 3.8671 | 5.3776 | 5.5136 | 5.3842 | 5.3216 | 5.3303 | 5.4847 | 5.4591 | 5.3623 | 5.4139 | 0.6865 | 0.6617 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}