metadata
language:
- bn
- cs
- de
- en
- et
- fi
- fr
- gu
- ha
- hi
- is
- ja
- kk
- km
- lt
- lv
- pl
- ps
- ru
- ta
- tr
- uk
- xh
- zh
- zu
- ne
- ro
- si
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1327190
- loss:CoSENTLoss
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
widget:
- source_sentence: यहाँका केही धार्मिक सम्पदाहरू यस प्रकार रहेका छन्।
sentences:
- >-
A party works journalists from advertisements about a massive Himalayan
post.
- Some religious affiliations here remain.
- >-
In Spain, the strict opposition of Roman Catholic churches is found to
have assumed a marriage similar to male beach wives.
- source_sentence: >-
"We can use this discovery to target both the assembly and stability of
the capsid, to either prevent the formation of the virus when it infects
the host cell, or break it apart after it's formed," Luque said. "This
could facilitate the characterization and identification of antiviral
targets for viruses sharing the same icosahedral layout."
sentences:
- >-
FC inter have today released Shefki Kuqi from the club's representative
team coach duties.
- >-
"Wir können diese Entdeckung nutzen, um sowohl die Montage als auch die
Stabilität des Kapsids anzustreben, um entweder die Bildung des Virus zu
verhindern, wenn es die Wirtszelle infiziert oder nach seiner Bildung
auseinanderbricht", sagte Luque. "Dies könnte die Charakterisierung und
Identifizierung von antiviralen Zielen für Viren erleichtern, die das
gleiche ikosaedrische Layout teilen".
- >-
Quellen sagen, Jones sei „wütend“, als das goldene Mädchen des
Fernsehens bei einem angespannten Treffen am Dienstag im Hauptquartier
seines Geschäftsimperiums in Marlow, Buckinghamshire, zugab, dass ihre
neuen Deals - im Wert von bis zu 1,5 Millionen Pfund - bedeuteten, dass
sie nicht mehr genug Zeit hatte, sich ihrer Hausbekleidungs- und
Zubehörmarke Truly zu widmen.
- source_sentence: >-
He possesses a pistol with silver bullets for protection from vampires and
werewolves.
sentences:
- >-
Er besitzt eine Pistole mit silbernen Kugeln zum Schutz vor Vampiren und
Werwölfen.
- Bibimbap umfasst Reis, Spinat, Rettich, Bohnensprossen.
- >-
BSAC profitierte auch von den großen, aber nicht unbeschränkten
persönlichen Vermögen von Rhodos und Beit vor ihrem Tod.
- source_sentence: >-
To the west of the Badger Head Inlier is the Port Sorell Formation, a
tectonic mélange of marine sediments and dolerite.
sentences:
- >-
Er brennt einen Speer und brennt Flammen aus seinem Mund, wenn er wütend
ist.
- >-
Westlich des Badger Head Inlier befindet sich die Port Sorell Formation,
eine tektonische Mischung aus Sedimenten und Dolerit.
- Public Lynching and Mob Violence under Modi Government
- source_sentence: >-
Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani
cetatea intră din nou sub stăpânirea europenilor.
sentences:
- >-
This is because, once again, we have taken into account the fact that we
have adopted a large number of legislative proposals.
- Helsinki University ranks 75th among universities for 2010.
- >-
Ottoman garnisoana is withdrawing into the south of the Danube and,
after 164 years, it is once again under the control of Europeans.
datasets:
- RicardoRei/wmt-da-human-evaluation
- wmt/wmt20_mlqe_task1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/distiluse-base-multilingual-cased-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts eval
type: sts-eval
metrics:
- type: pearson_cosine
value: 0.42415369784945883
name: Pearson Cosine
- type: spearman_cosine
value: 0.4175469519194782
name: Spearman Cosine
- type: pearson_cosine
value: 0.0772713008408403
name: Pearson Cosine
- type: spearman_cosine
value: 0.13050905562438264
name: Spearman Cosine
- type: pearson_cosine
value: 0.16731845692612535
name: Pearson Cosine
- type: spearman_cosine
value: 0.18366199919315862
name: Spearman Cosine
- type: pearson_cosine
value: 0.3567214608388243
name: Pearson Cosine
- type: spearman_cosine
value: 0.3656734148567112
name: Spearman Cosine
- type: pearson_cosine
value: 0.41267092498678554
name: Pearson Cosine
- type: spearman_cosine
value: 0.41036446071667193
name: Spearman Cosine
- type: pearson_cosine
value: 0.5254563854630899
name: Pearson Cosine
- type: spearman_cosine
value: 0.4785530551765603
name: Spearman Cosine
- type: pearson_cosine
value: 0.31194241573567016
name: Pearson Cosine
- type: spearman_cosine
value: 0.2814160300891252
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.4253603788235729
name: Pearson Cosine
- type: spearman_cosine
value: 0.4166117661445095
name: Spearman Cosine
- type: pearson_cosine
value: 0.022187134575214738
name: Pearson Cosine
- type: spearman_cosine
value: 0.04647559130832398
name: Spearman Cosine
- type: pearson_cosine
value: 0.15979577569463932
name: Pearson Cosine
- type: spearman_cosine
value: 0.2074497419832692
name: Spearman Cosine
- type: pearson_cosine
value: 0.3698928748443983
name: Pearson Cosine
- type: spearman_cosine
value: 0.3757690724227716
name: Spearman Cosine
- type: pearson_cosine
value: 0.44937864470538347
name: Pearson Cosine
- type: spearman_cosine
value: 0.45866193737582717
name: Spearman Cosine
- type: pearson_cosine
value: 0.4466389646053608
name: Pearson Cosine
- type: spearman_cosine
value: 0.4158920394678395
name: Spearman Cosine
- type: pearson_cosine
value: 0.33243289478987115
name: Pearson Cosine
- type: spearman_cosine
value: 0.2806845193699054
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2
This is a sentence-transformers model finetuned from sentence-transformers/distiluse-base-multilingual-cased-v2 on the wmt_da, mlqe_en_de, mlqe_en_zh, mlqe_et_en, mlqe_ne_en, mlqe_ro_en and mlqe_si_en datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/distiluse-base-multilingual-cased-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- Languages: bn, cs, de, en, et, fi, fr, gu, ha, hi, is, ja, kk, km, lt, lv, pl, ps, ru, ta, tr, uk, xh, zh, zu, ne, ro, si
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/distiluse-base-multilingual-cased-v2-sts")
# Run inference
sentences = [
'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.',
'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.',
'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-eval
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
,sts-test
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-eval | sts-test |
---|---|---|
pearson_cosine | 0.4242 | 0.3324 |
spearman_cosine | 0.4175 | 0.2807 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.0773 |
spearman_cosine | 0.1305 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.1673 |
spearman_cosine | 0.1837 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3567 |
spearman_cosine | 0.3657 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4127 |
spearman_cosine | 0.4104 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.5255 |
spearman_cosine | 0.4786 |
Semantic Similarity
- Dataset:
sts-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3119 |
spearman_cosine | 0.2814 |
Training Details
Training Datasets
wmt_da
- Dataset: wmt_da at 301de38
- Size: 1,285,190 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 37.09 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 37.12 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.7
- max: 1.0
- Samples:
sentence1 sentence2 score Z dat ÚZIS také vyplývá, že se zastavil úbytek zdravotních sester v nemocnicích.
The data from the IHIS also shows that the decline of nurses in hospitals has stopped.
0.47
Я был самым гордым, самым пьяным девственником, которого кто-либо когда-либо видел.
I was the proudest, most drunk virgin anyone had ever seen.
0.99
Das Trampolinspringen hat einen gewissen Außenseitercharme, teilweise weil es für das unaufgeklärte Ohr passender für eine Clownsschule als die für die Olympischen Spiele klingt.
The trampoline jumping has some outsider charm, in part because it sounds more appropriate for the unenlightened ear for a clowns school than the one for the Olympics.
0.81
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_de
- Dataset: mlqe_en_de at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 11 tokens
- mean: 23.78 tokens
- max: 44 tokens
- min: 11 tokens
- mean: 26.51 tokens
- max: 54 tokens
- min: 0.06
- mean: 0.86
- max: 1.0
- Samples:
sentence1 sentence2 score Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium.
Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten.
0.9233333468437195
While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean.
Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean.
0.8899999856948853
Distressed securities include such events as restructurings, recapitalizations, and bankruptcies.
Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen.
0.9300000071525574
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_zh
- Dataset: mlqe_en_zh at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 9 tokens
- mean: 24.09 tokens
- max: 47 tokens
- min: 12 tokens
- mean: 29.93 tokens
- max: 74 tokens
- min: 0.01
- mean: 0.68
- max: 0.98
- Samples:
sentence1 sentence2 score In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout."
在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。
0.40666666626930237
From 1870 to 1915, 36 million Europeans migrated away from Europe.
从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。
0.8333333730697632
In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown.
在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。
0.33000001311302185
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_et_en
- Dataset: mlqe_et_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 14 tokens
- mean: 31.88 tokens
- max: 63 tokens
- min: 11 tokens
- mean: 24.57 tokens
- max: 56 tokens
- min: 0.03
- mean: 0.67
- max: 1.0
- Samples:
sentence1 sentence2 score Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises.
In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying.
0.9466666579246521
Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks.
This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism.
0.9366666674613953
18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest.
On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people.
0.8666666150093079
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ne_en
- Dataset: mlqe_ne_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 17 tokens
- mean: 40.67 tokens
- max: 77 tokens
- min: 9 tokens
- mean: 24.66 tokens
- max: 128 tokens
- min: 0.01
- mean: 0.39
- max: 1.0
- Samples:
sentence1 sentence2 score सामान्य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ।
A normal budget is usually awarded to the digital working day of February.
0.5600000023841858
कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् ।
The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms.
0.23666666448116302
ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा हो र?
Britney did not respond to this, saying "which is a big thing and a big thing?
0.21666665375232697
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ro_en
- Dataset: mlqe_ro_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 tokens
- mean: 29.44 tokens
- max: 60 tokens
- min: 10 tokens
- mean: 22.38 tokens
- max: 65 tokens
- min: 0.01
- mean: 0.68
- max: 1.0
- Samples:
sentence1 sentence2 score Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale.
The city will be divided into four districts and suburbs into 10 mahalals.
0.4699999988079071
La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord.
In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement.
0.02666666731238365
Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional.
Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club.
0.8733333349227905
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_si_en
- Dataset: mlqe_si_en at 0783ed2
- Size: 7,000 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 18.19 tokens
- max: 38 tokens
- min: 9 tokens
- mean: 22.31 tokens
- max: 128 tokens
- min: 0.01
- mean: 0.51
- max: 1.0
- Samples:
sentence1 sentence2 score ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්රථම පර්යේෂණ පියාසැරිය විය.
The first research flight of the Apollo 4 Saturn V Booster.
0.7966666221618652
මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්රපටයක් ලද තෙවන කුඩාම අවපාතය වේ.
In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film.
0.17666666209697723
එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්රී හැසිරීම සංකේතවත් වන බව" පවසයි.
Also "the owl says that this monster's night behavior is symbolic".
0.8799999952316284
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Datasets
wmt_da
- Dataset: wmt_da at 301de38
- Size: 1,285,190 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 36.52 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 36.59 tokens
- max: 128 tokens
- min: 0.0
- mean: 0.7
- max: 1.0
- Samples:
sentence1 sentence2 score The note adds that should the departure from the White House be delayed, a second aircrew would be needed for the return flight due to duty-hour restrictions.
V poznámce se dodává, že pokud by se odlet z Bílého domu zpozdil, byla by pro zpáteční let kvůli omezení pracovní doby nutná druhá letecká posádka.
0.95
上半年电信网络诈骗犯罪上升七成 最高检总结特点-中新网
In the first half of the year, telecommunication network fraud crimes rose by 70%. The highest inspection summary characteristics-Zhongxin.com
0.72
Als zentrale Herausforderungen für den Bundesnachrichtendienst (BND) nannte Merkel den Kampf gegen die Verbreitung von Falschmeldungen im Internet und die Abwehr von Cyberattacken.
Merkel a cité la lutte contre la propagation de fausses nouvelles en ligne et la défense contre les cyberattaques comme des défis majeurs pour le service fédéral de renseignement (BND).
0.87
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_de
- Dataset: mlqe_en_de at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 11 tokens
- mean: 24.11 tokens
- max: 49 tokens
- min: 11 tokens
- mean: 26.66 tokens
- max: 55 tokens
- min: 0.03
- mean: 0.81
- max: 1.0
- Samples:
sentence1 sentence2 score Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret.
Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern.
0.9033333659172058
Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral.
Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten.
0.9216666221618652
This initiated a brief correspondence between the two which quickly descended into political rancor.
Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg.
0.878333330154419
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_en_zh
- Dataset: mlqe_en_zh at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 9 tokens
- mean: 23.75 tokens
- max: 49 tokens
- min: 11 tokens
- mean: 29.56 tokens
- max: 67 tokens
- min: 0.26
- mean: 0.65
- max: 0.9
- Samples:
sentence1 sentence2 score Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo.
弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。
0.6683333516120911
Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog!
奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 !
0.71833336353302
For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength."
对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。
0.7066666483879089
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_et_en
- Dataset: mlqe_et_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 12 tokens
- mean: 32.4 tokens
- max: 58 tokens
- min: 10 tokens
- mean: 24.87 tokens
- max: 47 tokens
- min: 0.03
- mean: 0.6
- max: 0.99
- Samples:
sentence1 sentence2 score Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon.
Jackson gave a speech there saying that James Brown is his greatest inspiration.
0.9833333492279053
Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil.
The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution.
0.28999999165534973
Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem.
During World War II, he was the commander of several of the German leadership.
0.4516666829586029
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ne_en
- Dataset: mlqe_ne_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 17 tokens
- mean: 41.03 tokens
- max: 85 tokens
- min: 10 tokens
- mean: 24.77 tokens
- max: 128 tokens
- min: 0.05
- mean: 0.36
- max: 0.92
- Samples:
sentence1 sentence2 score १८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे।
Around 1892, Bhavani Pandit translated the 'money monster'.
0.8416666388511658
यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ ।
The breasts of this child's mouth are taped well with the mother's mouth.
0.2150000035762787
बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।...
Kei Singh, who stole the boy's closet, took the bullet to bring it now..
0.27000001072883606
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_ro_en
- Dataset: mlqe_ro_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 14 tokens
- mean: 30.25 tokens
- max: 59 tokens
- min: 6 tokens
- mean: 22.7 tokens
- max: 55 tokens
- min: 0.01
- mean: 0.68
- max: 1.0
- Samples:
sentence1 sentence2 score Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze.
Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet.
0.8199999928474426
thumbrightuprightDansatori [[cretani de muzică tradițională.
Number of employees employed in the production of the like product in the Union.
0.009999999776482582
Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului.
According to the documents of the oral weather and tradition, this was the hardest period in the city's history.
0.5383332967758179
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
mlqe_si_en
- Dataset: mlqe_si_en at 0783ed2
- Size: 1,000 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 18.12 tokens
- max: 36 tokens
- min: 7 tokens
- mean: 22.18 tokens
- max: 128 tokens
- min: 0.03
- mean: 0.51
- max: 0.99
- Samples:
sentence1 sentence2 score එයට ශි්ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්.
It can also cause peace in Sri Lanka.
0.3199999928474426
ඔහු මනෝ විද්යාව, සමාජ විද්යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්රයන් පිලිබදවද අධ්යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි.
He attempted to do subjects in psychology, sociology, history and communication.
0.5366666913032532
එහෙත් කිසිදු මිනිසෙක් හෝ ගැහැනියෙක් එලිමහනක නොවූහ.
But no man or woman was eliminated.
0.2783333361148834
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 2warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | wmt da loss | mlqe en de loss | mlqe en zh loss | mlqe et en loss | mlqe ne en loss | mlqe ro en loss | mlqe si en loss | sts-eval_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4 | 6690 | 7.8421 | 7.5547 | 7.5619 | 7.5555 | 7.5327 | 7.5354 | 7.5109 | 7.5564 | 0.1989 | - |
0.8 | 13380 | 7.552 | 7.5420 | 7.5757 | 7.5739 | 7.5185 | 7.5126 | 7.4994 | 7.5511 | 0.2336 | - |
1.2 | 20070 | 7.5216 | 7.5465 | 7.6072 | 7.5942 | 7.5217 | 7.5141 | 7.4871 | 7.5471 | 0.2694 | - |
1.6 | 26760 | 7.5024 | 7.5329 | 7.6123 | 7.5814 | 7.5230 | 7.5141 | 7.4679 | 7.5379 | 0.2866 | - |
2.0 | 33450 | 7.495 | 7.5252 | 7.6106 | 7.5756 | 7.5201 | 7.5128 | 7.4725 | 7.5417 | 0.2814 | 0.2807 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.3.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}