|
--- |
|
language: |
|
- bn |
|
- cs |
|
- de |
|
- en |
|
- et |
|
- fi |
|
- fr |
|
- gu |
|
- ha |
|
- hi |
|
- is |
|
- ja |
|
- kk |
|
- km |
|
- lt |
|
- lv |
|
- pl |
|
- ps |
|
- ru |
|
- ta |
|
- tr |
|
- uk |
|
- xh |
|
- zh |
|
- zu |
|
- ne |
|
- ro |
|
- si |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:1327190 |
|
- loss:CoSENTLoss |
|
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2 |
|
widget: |
|
- source_sentence: यहाँका केही धार्मिक सम्पदाहरू यस प्रकार रहेका छन्। |
|
sentences: |
|
- A party works journalists from advertisements about a massive Himalayan post. |
|
- Some religious affiliations here remain. |
|
- In Spain, the strict opposition of Roman Catholic churches is found to have assumed |
|
a marriage similar to male beach wives. |
|
- source_sentence: '"We can use this discovery to target both the assembly and stability |
|
of the capsid, to either prevent the formation of the virus when it infects the |
|
host cell, or break it apart after it''s formed," Luque said. "This could facilitate |
|
the characterization and identification of antiviral targets for viruses sharing |
|
the same icosahedral layout."' |
|
sentences: |
|
- FC inter have today released Shefki Kuqi from the club's representative team coach |
|
duties. |
|
- '"Wir können diese Entdeckung nutzen, um sowohl die Montage als auch die Stabilität |
|
des Kapsids anzustreben, um entweder die Bildung des Virus zu verhindern, wenn |
|
es die Wirtszelle infiziert oder nach seiner Bildung auseinanderbricht", sagte |
|
Luque. "Dies könnte die Charakterisierung und Identifizierung von antiviralen |
|
Zielen für Viren erleichtern, die das gleiche ikosaedrische Layout teilen".' |
|
- Quellen sagen, Jones sei „wütend“, als das goldene Mädchen des Fernsehens bei |
|
einem angespannten Treffen am Dienstag im Hauptquartier seines Geschäftsimperiums |
|
in Marlow, Buckinghamshire, zugab, dass ihre neuen Deals - im Wert von bis zu |
|
1,5 Millionen Pfund - bedeuteten, dass sie nicht mehr genug Zeit hatte, sich ihrer |
|
Hausbekleidungs- und Zubehörmarke Truly zu widmen. |
|
- source_sentence: He possesses a pistol with silver bullets for protection from vampires |
|
and werewolves. |
|
sentences: |
|
- Er besitzt eine Pistole mit silbernen Kugeln zum Schutz vor Vampiren und Werwölfen. |
|
- Bibimbap umfasst Reis, Spinat, Rettich, Bohnensprossen. |
|
- BSAC profitierte auch von den großen, aber nicht unbeschränkten persönlichen Vermögen |
|
von Rhodos und Beit vor ihrem Tod. |
|
- source_sentence: To the west of the Badger Head Inlier is the Port Sorell Formation, |
|
a tectonic mélange of marine sediments and dolerite. |
|
sentences: |
|
- Er brennt einen Speer und brennt Flammen aus seinem Mund, wenn er wütend ist. |
|
- Westlich des Badger Head Inlier befindet sich die Port Sorell Formation, eine |
|
tektonische Mischung aus Sedimenten und Dolerit. |
|
- Public Lynching and Mob Violence under Modi Government |
|
- source_sentence: Garnizoana otomană se retrage în sudul Dunării, iar după 164 de |
|
ani cetatea intră din nou sub stăpânirea europenilor. |
|
sentences: |
|
- This is because, once again, we have taken into account the fact that we have |
|
adopted a large number of legislative proposals. |
|
- Helsinki University ranks 75th among universities for 2010. |
|
- Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 |
|
years, it is once again under the control of Europeans. |
|
datasets: |
|
- RicardoRei/wmt-da-human-evaluation |
|
- wmt/wmt20_mlqe_task1 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts eval |
|
type: sts-eval |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.42415369784945883 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.4175469519194782 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.0772713008408403 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.13050905562438264 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.16731845692612535 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.18366199919315862 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.3567214608388243 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.3656734148567112 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.41267092498678554 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.41036446071667193 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.5254563854630899 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.4785530551765603 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.31194241573567016 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2814160300891252 |
|
name: Spearman Cosine |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.4253603788235729 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.4166117661445095 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.022187134575214738 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.04647559130832398 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.15979577569463932 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2074497419832692 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.3698928748443983 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.3757690724227716 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.44937864470538347 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.45866193737582717 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.4466389646053608 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.4158920394678395 |
|
name: Spearman Cosine |
|
- type: pearson_cosine |
|
value: 0.33243289478987115 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.2806845193699054 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) on the [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation), [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) and [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) <!-- at revision dad0fa1ee4fa6e982d3adbce87c73c02e6aee838 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 512 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Datasets:** |
|
- [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) |
|
- [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) |
|
- [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) |
|
- [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) |
|
- [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) |
|
- [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) |
|
- [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) |
|
- **Languages:** bn, cs, de, en, et, fi, fr, gu, ha, hi, is, ja, kk, km, lt, lv, pl, ps, ru, ta, tr, uk, xh, zh, zu, ne, ro, si |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("RomainDarous/distiluse-base-multilingual-cased-v2-sts") |
|
# Run inference |
|
sentences = [ |
|
'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.', |
|
'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.', |
|
'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 512] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | sts-eval | sts-test | |
|
|:--------------------|:-----------|:-----------| |
|
| pearson_cosine | 0.4242 | 0.3324 | |
|
| **spearman_cosine** | **0.4175** | **0.2807** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.0773 | |
|
| **spearman_cosine** | **0.1305** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.1673 | |
|
| **spearman_cosine** | **0.1837** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.3567 | |
|
| **spearman_cosine** | **0.3657** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.4127 | |
|
| **spearman_cosine** | **0.4104** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.5255 | |
|
| **spearman_cosine** | **0.4786** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Dataset: `sts-eval` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.3119 | |
|
| **spearman_cosine** | **0.2814** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Datasets |
|
|
|
#### wmt_da |
|
|
|
* Dataset: [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425) |
|
* Size: 1,285,190 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 37.09 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 37.12 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.7</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| |
|
| <code>Z dat ÚZIS také vyplývá, že se zastavil úbytek zdravotních sester v nemocnicích.</code> | <code>The data from the IHIS also shows that the decline of nurses in hospitals has stopped.</code> | <code>0.47</code> | |
|
| <code>Я был самым гордым, самым пьяным девственником, которого кто-либо когда-либо видел.</code> | <code>I was the proudest, most drunk virgin anyone had ever seen.</code> | <code>0.99</code> | |
|
| <code>Das Trampolinspringen hat einen gewissen Außenseitercharme, teilweise weil es für das unaufgeklärte Ohr passender für eine Clownsschule als die für die Olympischen Spiele klingt.</code> | <code>The trampoline jumping has some outsider charm, in part because it sounds more appropriate for the unenlightened ear for a clowns school than the one for the Olympics.</code> | <code>0.81</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_en_de |
|
|
|
* Dataset: [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 7,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 23.78 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.51 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.06</li><li>mean: 0.86</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium.</code> | <code>Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten.</code> | <code>0.9233333468437195</code> | |
|
| <code>While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean.</code> | <code>Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean.</code> | <code>0.8899999856948853</code> | |
|
| <code>Distressed securities include such events as restructurings, recapitalizations, and bankruptcies.</code> | <code>Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen.</code> | <code>0.9300000071525574</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_en_zh |
|
|
|
* Dataset: [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 7,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 24.09 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 29.93 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 0.98</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------------------------| |
|
| <code>In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout."</code> | <code>在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。</code> | <code>0.40666666626930237</code> | |
|
| <code>From 1870 to 1915, 36 million Europeans migrated away from Europe.</code> | <code>从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。</code> | <code>0.8333333730697632</code> | |
|
| <code>In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown.</code> | <code>在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。</code> | <code>0.33000001311302185</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_et_en |
|
|
|
* Dataset: [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 7,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 14 tokens</li><li>mean: 31.88 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 24.57 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.67</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises.</code> | <code>In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying.</code> | <code>0.9466666579246521</code> | |
|
| <code>Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks.</code> | <code>This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism.</code> | <code>0.9366666674613953</code> | |
|
| <code>18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest.</code> | <code>On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people.</code> | <code>0.8666666150093079</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_ne_en |
|
|
|
* Dataset: [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 7,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 17 tokens</li><li>mean: 40.67 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 24.66 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.39</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>सामान्य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ।</code> | <code>A normal budget is usually awarded to the digital working day of February.</code> | <code>0.5600000023841858</code> | |
|
| <code>कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् ।</code> | <code>The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms.</code> | <code>0.23666666448116302</code> | |
|
| <code>ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा हो र?</code> | <code>Britney did not respond to this, saying "which is a big thing and a big thing?</code> | <code>0.21666665375232697</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_ro_en |
|
|
|
* Dataset: [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 7,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 29.44 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 22.38 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale.</code> | <code>The city will be divided into four districts and suburbs into 10 mahalals.</code> | <code>0.4699999988079071</code> | |
|
| <code>La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord.</code> | <code>In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement.</code> | <code>0.02666666731238365</code> | |
|
| <code>Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional.</code> | <code>Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club.</code> | <code>0.8733333349227905</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_si_en |
|
|
|
* Dataset: [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 7,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 18.19 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 22.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.51</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්රථම පර්යේෂණ පියාසැරිය විය.</code> | <code>The first research flight of the Apollo 4 Saturn V Booster.</code> | <code>0.7966666221618652</code> | |
|
| <code>මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්රපටයක් ලද තෙවන කුඩාම අවපාතය වේ.</code> | <code>In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film.</code> | <code>0.17666666209697723</code> | |
|
| <code>එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්රී හැසිරීම සංකේතවත් වන බව" පවසයි.</code> | <code>Also "the owl says that this monster's night behavior is symbolic".</code> | <code>0.8799999952316284</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Datasets |
|
|
|
#### wmt_da |
|
|
|
* Dataset: [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425) |
|
* Size: 1,285,190 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 36.52 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.7</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| |
|
| <code>The note adds that should the departure from the White House be delayed, a second aircrew would be needed for the return flight due to duty-hour restrictions.</code> | <code>V poznámce se dodává, že pokud by se odlet z Bílého domu zpozdil, byla by pro zpáteční let kvůli omezení pracovní doby nutná druhá letecká posádka.</code> | <code>0.95</code> | |
|
| <code>上半年电信网络诈骗犯罪上升七成 最高检总结特点-中新网</code> | <code>In the first half of the year, telecommunication network fraud crimes rose by 70%. The highest inspection summary characteristics-Zhongxin.com</code> | <code>0.72</code> | |
|
| <code>Als zentrale Herausforderungen für den Bundesnachrichtendienst (BND) nannte Merkel den Kampf gegen die Verbreitung von Falschmeldungen im Internet und die Abwehr von Cyberattacken.</code> | <code>Merkel a cité la lutte contre la propagation de fausses nouvelles en ligne et la défense contre les cyberattaques comme des défis majeurs pour le service fédéral de renseignement (BND).</code> | <code>0.87</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_en_de |
|
|
|
* Dataset: [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 24.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.66 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.81</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret.</code> | <code>Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern.</code> | <code>0.9033333659172058</code> | |
|
| <code>Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral.</code> | <code>Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten.</code> | <code>0.9216666221618652</code> | |
|
| <code>This initiated a brief correspondence between the two which quickly descended into political rancor.</code> | <code>Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg.</code> | <code>0.878333330154419</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_en_zh |
|
|
|
* Dataset: [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 9 tokens</li><li>mean: 23.75 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 29.56 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 0.26</li><li>mean: 0.65</li><li>max: 0.9</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:---------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------|:--------------------------------| |
|
| <code>Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo.</code> | <code>弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。</code> | <code>0.6683333516120911</code> | |
|
| <code>Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog!</code> | <code>奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 !</code> | <code>0.71833336353302</code> | |
|
| <code>For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength."</code> | <code>对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。</code> | <code>0.7066666483879089</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_et_en |
|
|
|
* Dataset: [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 12 tokens</li><li>mean: 32.4 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.6</li><li>max: 0.99</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon.</code> | <code>Jackson gave a speech there saying that James Brown is his greatest inspiration.</code> | <code>0.9833333492279053</code> | |
|
| <code>Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil.</code> | <code>The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution.</code> | <code>0.28999999165534973</code> | |
|
| <code>Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem.</code> | <code>During World War II, he was the commander of several of the German leadership.</code> | <code>0.4516666829586029</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_ne_en |
|
|
|
* Dataset: [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 17 tokens</li><li>mean: 41.03 tokens</li><li>max: 85 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 24.77 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.05</li><li>mean: 0.36</li><li>max: 0.92</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------| |
|
| <code>१८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे।</code> | <code>Around 1892, Bhavani Pandit translated the 'money monster'.</code> | <code>0.8416666388511658</code> | |
|
| <code>यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ ।</code> | <code>The breasts of this child's mouth are taped well with the mother's mouth.</code> | <code>0.2150000035762787</code> | |
|
| <code>बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।...</code> | <code>Kei Singh, who stole the boy's closet, took the bullet to bring it now..</code> | <code>0.27000001072883606</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_ro_en |
|
|
|
* Dataset: [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 14 tokens</li><li>mean: 30.25 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 22.7 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.68</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------| |
|
| <code>Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze.</code> | <code>Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet.</code> | <code>0.8199999928474426</code> | |
|
| <code>thumbrightuprightDansatori [[cretani de muzică tradițională.</code> | <code>Number of employees employed in the production of the like product in the Union.</code> | <code>0.009999999776482582</code> | |
|
| <code>Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului.</code> | <code>According to the documents of the oral weather and tradition, this was the hardest period in the city's history.</code> | <code>0.5383332967758179</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
#### mlqe_si_en |
|
|
|
* Dataset: [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 18.12 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.18 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.03</li><li>mean: 0.51</li><li>max: 0.99</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>එයට ශි්ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්.</code> | <code>It can also cause peace in Sri Lanka.</code> | <code>0.3199999928474426</code> | |
|
| <code>ඔහු මනෝ විද්යාව, සමාජ විද්යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්රයන් පිලිබදවද අධ්යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි.</code> | <code>He attempted to do subjects in psychology, sociology, history and communication.</code> | <code>0.5366666913032532</code> | |
|
| <code>එහෙත් කිසිදු මිනිසෙක් හෝ ගැහැනියෙක් එලිමහනක නොවූහ.</code> | <code>But no man or woman was eliminated.</code> | <code>0.2783333361148834</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 2 |
|
- `warmup_ratio`: 0.1 |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | wmt da loss | mlqe en de loss | mlqe en zh loss | mlqe et en loss | mlqe ne en loss | mlqe ro en loss | mlqe si en loss | sts-eval_spearman_cosine | sts-test_spearman_cosine | |
|
|:-----:|:-----:|:-------------:|:-----------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:------------------------:|:------------------------:| |
|
| 0.4 | 6690 | 7.8421 | 7.5547 | 7.5619 | 7.5555 | 7.5327 | 7.5354 | 7.5109 | 7.5564 | 0.1989 | - | |
|
| 0.8 | 13380 | 7.552 | 7.5420 | 7.5757 | 7.5739 | 7.5185 | 7.5126 | 7.4994 | 7.5511 | 0.2336 | - | |
|
| 1.2 | 20070 | 7.5216 | 7.5465 | 7.6072 | 7.5942 | 7.5217 | 7.5141 | 7.4871 | 7.5471 | 0.2694 | - | |
|
| 1.6 | 26760 | 7.5024 | 7.5329 | 7.6123 | 7.5814 | 7.5230 | 7.5141 | 7.4679 | 7.5379 | 0.2866 | - | |
|
| 2.0 | 33450 | 7.495 | 7.5252 | 7.6106 | 7.5756 | 7.5201 | 7.5128 | 7.4725 | 7.5417 | 0.2814 | 0.2807 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.10 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |