Roxysun's picture
cs2fi_wav2vec2-large-xls-r-300m-czech-colab
e507824
|
raw
history blame
2.67 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft
tags:
  - generated_from_trainer
datasets:
  - voxpopuli
metrics:
  - wer
model-index:
  - name: cs2fi_wav2vec2-large-xls-r-300m-czech-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: voxpopuli
          type: voxpopuli
          config: fi
          split: test
          args: fi
        metrics:
          - name: Wer
            type: wer
            value: 1.0754716981132075

cs2fi_wav2vec2-large-xls-r-300m-czech-colab

This model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the voxpopuli dataset. It achieves the following results on the evaluation set:

  • Loss: 485.7458
  • Wer: 1.0755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3007.5297 3.51 100 523.8923 0.9706
353.1859 7.02 200 270.8087 0.9665
207.1084 10.53 300 215.3542 0.9350
186.3063 14.04 400 210.1422 0.9119
171.7259 17.54 500 291.5182 1.0629
142.6091 21.05 600 219.2806 0.9602
118.6791 24.56 700 312.2755 1.1132
96.153 28.07 800 320.7119 1.0545
82.968 31.58 900 357.5117 1.0629
71.2426 35.09 1000 421.3889 0.9916
58.8083 38.6 1100 433.8375 1.1048
54.5225 42.11 1200 482.5988 1.0566
48.12 45.61 1300 479.3787 1.0860
43.3324 49.12 1400 485.7458 1.0755

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0