|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- voxpopuli |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: cs2fi_wav2vec2-large-xls-r-300m-czech-colab |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: voxpopuli |
|
type: voxpopuli |
|
config: fi |
|
split: test |
|
args: fi |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 1.0754716981132075 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cs2fi_wav2vec2-large-xls-r-300m-czech-colab |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the voxpopuli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 485.7458 |
|
- Wer: 1.0755 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3007.5297 | 3.51 | 100 | 523.8923 | 0.9706 | |
|
| 353.1859 | 7.02 | 200 | 270.8087 | 0.9665 | |
|
| 207.1084 | 10.53 | 300 | 215.3542 | 0.9350 | |
|
| 186.3063 | 14.04 | 400 | 210.1422 | 0.9119 | |
|
| 171.7259 | 17.54 | 500 | 291.5182 | 1.0629 | |
|
| 142.6091 | 21.05 | 600 | 219.2806 | 0.9602 | |
|
| 118.6791 | 24.56 | 700 | 312.2755 | 1.1132 | |
|
| 96.153 | 28.07 | 800 | 320.7119 | 1.0545 | |
|
| 82.968 | 31.58 | 900 | 357.5117 | 1.0629 | |
|
| 71.2426 | 35.09 | 1000 | 421.3889 | 0.9916 | |
|
| 58.8083 | 38.6 | 1100 | 433.8375 | 1.1048 | |
|
| 54.5225 | 42.11 | 1200 | 482.5988 | 1.0566 | |
|
| 48.12 | 45.61 | 1300 | 479.3787 | 1.0860 | |
|
| 43.3324 | 49.12 | 1400 | 485.7458 | 1.0755 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|