Roxysun's picture
cs2fi_wav2vec2-large-xls-r-300m-czech-colab
81a565a
metadata
license: apache-2.0
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft
tags:
  - generated_from_trainer
datasets:
  - voxpopuli
metrics:
  - wer
model-index:
  - name: cs2fi_wav2vec2-large-xls-r-300m-czech-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: voxpopuli
          type: voxpopuli
          config: fi
          split: test
          args: fi
        metrics:
          - name: Wer
            type: wer
            value: 1.0859538784067087

cs2fi_wav2vec2-large-xls-r-300m-czech-colab

This model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the voxpopuli dataset. It achieves the following results on the evaluation set:

  • Loss: 507.5248
  • Wer: 1.0860

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3042.8738 3.51 100 422.1938 0.9518
362.1554 7.02 200 231.7486 1.0
208.092 10.53 300 196.4194 0.9958
189.1354 14.04 400 211.6223 0.9350
163.6355 17.54 500 235.3201 0.9182
140.7959 21.05 600 256.4028 0.9539
115.5506 24.56 700 311.4562 1.0147
93.6629 28.07 800 304.0882 1.2243
78.9694 31.58 900 354.5415 1.1279
67.4151 35.09 1000 423.6178 1.0860
55.1471 38.6 1100 468.3192 1.0922
55.8001 42.11 1200 408.8039 1.0839
46.9208 45.61 1300 524.1367 1.0650
43.7264 49.12 1400 507.5248 1.0860

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0