|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- voxpopuli |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: cs2fi_wav2vec2-large-xls-r-300m-czech-colab |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: voxpopuli |
|
type: voxpopuli |
|
config: fi |
|
split: test |
|
args: fi |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 1.0859538784067087 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cs2fi_wav2vec2-large-xls-r-300m-czech-colab |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the voxpopuli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 507.5248 |
|
- Wer: 1.0860 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3042.8738 | 3.51 | 100 | 422.1938 | 0.9518 | |
|
| 362.1554 | 7.02 | 200 | 231.7486 | 1.0 | |
|
| 208.092 | 10.53 | 300 | 196.4194 | 0.9958 | |
|
| 189.1354 | 14.04 | 400 | 211.6223 | 0.9350 | |
|
| 163.6355 | 17.54 | 500 | 235.3201 | 0.9182 | |
|
| 140.7959 | 21.05 | 600 | 256.4028 | 0.9539 | |
|
| 115.5506 | 24.56 | 700 | 311.4562 | 1.0147 | |
|
| 93.6629 | 28.07 | 800 | 304.0882 | 1.2243 | |
|
| 78.9694 | 31.58 | 900 | 354.5415 | 1.1279 | |
|
| 67.4151 | 35.09 | 1000 | 423.6178 | 1.0860 | |
|
| 55.1471 | 38.6 | 1100 | 468.3192 | 1.0922 | |
|
| 55.8001 | 42.11 | 1200 | 408.8039 | 1.0839 | |
|
| 46.9208 | 45.61 | 1300 | 524.1367 | 1.0650 | |
|
| 43.7264 | 49.12 | 1400 | 507.5248 | 1.0860 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|