Roxysun's picture
cs2no_wav2vec2-large-xls-r-300m-czech-colab
b51b6a2
metadata
license: apache-2.0
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft
tags:
  - generated_from_trainer
datasets:
  - nb_samtale
metrics:
  - wer
model-index:
  - name: cs2no_wav2vec2-large-xls-r-300m-czech-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nb_samtale
          type: nb_samtale
          config: annotations
          split: test
          args: annotations
        metrics:
          - name: Wer
            type: wer
            value: 0.8457142857142858

cs2no_wav2vec2-large-xls-r-300m-czech-colab

This model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the nb_samtale dataset. It achieves the following results on the evaluation set:

  • Loss: 396.8153
  • Wer: 0.8457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3026.3663 3.51 100 472.1026 0.9873
336.2439 7.02 200 239.3806 0.9987
208.6184 10.53 300 206.7293 0.9917
182.6556 14.04 400 221.5585 0.8908
174.3151 17.54 500 262.3953 0.8921
140.57 21.05 600 225.9887 0.8330
114.5967 24.56 700 275.7823 0.8495
91.2748 28.07 800 314.0284 0.8610
80.0496 31.58 900 314.4608 0.8552
66.7338 35.09 1000 326.7965 0.8527
56.921 38.6 1100 373.0237 0.8425
50.7125 42.11 1200 374.9553 0.8527
47.4235 45.61 1300 404.8124 0.8489
45.1623 49.12 1400 396.8153 0.8457

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0