|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nb_samtale |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: cs2no_wav2vec2-large-xls-r-300m-czech-colab |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: nb_samtale |
|
type: nb_samtale |
|
config: annotations |
|
split: test |
|
args: annotations |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.8457142857142858 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# cs2no_wav2vec2-large-xls-r-300m-czech-colab |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-lv-60-espeak-cv-ft](https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft) on the nb_samtale dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 396.8153 |
|
- Wer: 0.8457 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3026.3663 | 3.51 | 100 | 472.1026 | 0.9873 | |
|
| 336.2439 | 7.02 | 200 | 239.3806 | 0.9987 | |
|
| 208.6184 | 10.53 | 300 | 206.7293 | 0.9917 | |
|
| 182.6556 | 14.04 | 400 | 221.5585 | 0.8908 | |
|
| 174.3151 | 17.54 | 500 | 262.3953 | 0.8921 | |
|
| 140.57 | 21.05 | 600 | 225.9887 | 0.8330 | |
|
| 114.5967 | 24.56 | 700 | 275.7823 | 0.8495 | |
|
| 91.2748 | 28.07 | 800 | 314.0284 | 0.8610 | |
|
| 80.0496 | 31.58 | 900 | 314.4608 | 0.8552 | |
|
| 66.7338 | 35.09 | 1000 | 326.7965 | 0.8527 | |
|
| 56.921 | 38.6 | 1100 | 373.0237 | 0.8425 | |
|
| 50.7125 | 42.11 | 1200 | 374.9553 | 0.8527 | |
|
| 47.4235 | 45.61 | 1300 | 404.8124 | 0.8489 | |
|
| 45.1623 | 49.12 | 1400 | 396.8153 | 0.8457 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|