Roxysun's picture
wav2vec2-large-xls-r-300m-czech-colab-finetuned
5500f0d
metadata
license: apache-2.0
base_model: facebook/wav2vec2-lv-60-espeak-cv-ft
tags:
  - generated_from_trainer
datasets:
  - voxpopuli
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-czech-colab-finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: voxpopuli
          type: voxpopuli
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 0.6178421298458664

wav2vec2-large-xls-r-300m-czech-colab-finetuned

This model is a fine-tuned version of facebook/wav2vec2-lv-60-espeak-cv-ft on the voxpopuli dataset. It achieves the following results on the evaluation set:

  • Loss: 624.5939
  • Wer: 0.6178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3007.3212 3.51 100 1006.7374 0.9865
354.3011 7.02 200 563.6080 0.9980
211.5289 10.53 300 599.5796 0.9165
187.8653 14.04 400 447.1478 0.8099
163.1056 17.54 500 430.5204 0.6875
143.0342 21.05 600 413.8947 0.6850
116.0388 24.56 700 435.5743 0.6737
95.5554 28.07 800 490.6329 0.6339
80.6966 31.58 900 493.9658 0.6344
68.7335 35.09 1000 525.7507 0.6263
58.3269 38.6 1100 582.5747 0.6128
54.3181 42.11 1200 600.8087 0.6308
48.5287 45.61 1300 594.6959 0.6112
43.041 49.12 1400 624.5939 0.6178

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0