|
--- |
|
license: mit |
|
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- recall |
|
- accuracy |
|
- precision |
|
model-index: |
|
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-base-fine-tuned-text-classificarion-ds-ss |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-base-fine-tuned-text-classificarion-ds-ss |
|
|
|
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0473 |
|
- F1: 0.7427 |
|
- Recall: 0.7662 |
|
- Accuracy: 0.7662 |
|
- Precision: 0.7444 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:| |
|
| 3.4822 | 1.0 | 883 | 2.0495 | 0.3963 | 0.4790 | 0.4790 | 0.3791 | |
|
| 1.6347 | 2.0 | 1766 | 1.2672 | 0.6622 | 0.7030 | 0.7030 | 0.6535 | |
|
| 1.0807 | 3.0 | 2649 | 1.0711 | 0.7172 | 0.7420 | 0.7420 | 0.7065 | |
|
| 0.8958 | 4.0 | 3532 | 1.0654 | 0.7232 | 0.7489 | 0.7489 | 0.7218 | |
|
| 0.7766 | 5.0 | 4415 | 1.0473 | 0.7427 | 0.7662 | 0.7662 | 0.7444 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|