Tito-7B-slerp / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
0ff2364 verified
|
raw
history blame
6.11 kB
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - gordicaleksa/YugoGPT
  - mlabonne/AlphaMonarch-7B
model-index:
  - name: Tito-7B-slerp
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 68.09
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 86.38
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.01
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 81.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.61
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
          name: Open LLM Leaderboard

Tito-7B-slerp

Tito-7B-slerp is a merge of the following models using mergekit:

🧩 Configuration

slices:
  - sources:
      - model: gordicaleksa/YugoGPT
        layer_range: [0, 32]
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.6
dtype: bfloat16

Results

Evaluations on Serbian LLM eval suite (or rather, performance and knowledge of Serbian):

ARC-E ARC-C Hellaswag BoolQ Winogrande OpenbookQA PiQA NQ Open TriviaQA Avg.
Zamfir-7B 51.85 32.25 46.03 75.59 62.59 26.00 66.81 16.09 36.11 45.92
Mustra-7B 52.95 33.70 45.89 77.55 64.17 30.60 67.25 15.40 34.84 46.93
Tito-7B 55.43 34.73 48.19 77.37 65.27 30.00 67.30 16.7 35.38 47.82
YugoGPT 57.79 34.73 49.89 69.45 64.56 28.20 72.03 15.82 36.14 47.62

Here, all benchmarks were done 0-shot, on the exception of NQ Open and TriviaQA which were done in 5-shot manner, in order to be comparable to Mistral paper.

Evalutaions on Open LLM Leaderboard (or rather, performance and knowledge of English):

ARC Hellaswag Winogrande MMLU GSM8k ThruthfulQA Avg.
Tito-7B 68.08 86.37 81.69 64.01 63.61 57.01 70.13
YugoGPT 58.10 81.44 76.56 60.68 30.70 36.60 57.34

Here, Winogrande, GSM8k, MMLU were done in 5-shot manner, Hellaswag in 10-shot manner, and finally ARC in 25-shot manner.

If we try to replicate these approaches on available Serbian datasets (running an appropriate amount of shots instead of 0), we get:

ARC Hellaswag Winogrande Avg.
Tito-7B 47.27 - 69.93 -
YugoGPT 44.03 - 70.64 -

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 70.13
AI2 Reasoning Challenge (25-Shot) 68.09
HellaSwag (10-Shot) 86.38
MMLU (5-Shot) 64.01
TruthfulQA (0-shot) 57.01
Winogrande (5-shot) 81.69
GSM8k (5-shot) 63.61