Tito-7B-slerp / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
0ff2364 verified
|
raw
history blame
6.11 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- gordicaleksa/YugoGPT
- mlabonne/AlphaMonarch-7B
model-index:
- name: Tito-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.01
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Stopwolf/Tito-7B-slerp
name: Open LLM Leaderboard
---
# Tito-7B-slerp
Tito-7B-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
* [gordicaleksa/YugoGPT](https://huggingface.co/gordicaleksa/YugoGPT)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: gordicaleksa/YugoGPT
layer_range: [0, 32]
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.6
dtype: bfloat16
```
## Results
Evaluations on Serbian LLM eval suite (or rather, performance and knowledge of Serbian):
| | ARC-E | ARC-C | Hellaswag | BoolQ | Winogrande | OpenbookQA | PiQA | NQ Open | TriviaQA | Avg. |
|-----------|-------|-------|-----------|-------|------------|------------|-------|---------|----------|-------|
| [Zamfir-7B](https://huggingface.co/Stopwolf/Zamfir-7B-slerp) | 51.85 | 32.25 | 46.03 | 75.59 | 62.59 | 26.00 | 66.81 | 16.09 | 36.11 | 45.92 |
| [Mustra-7B](https://huggingface.co/Stopwolf/Mustra-7B-Instruct-v0.1) | 52.95 | 33.70 | 45.89 | **77.55** | 64.17 | **30.60** | 67.25 | 15.40 | 34.84 | 46.93 |
| [Tito-7B](https://huggingface.co/Stopwolf/Tito-7B) | 55.43 | **34.73** | 48.19 | 77.37 | **65.27** | 30.00 | 67.30 | **16.7** | 35.38 | **47.82** |
| [YugoGPT](https://huggingface.co/gordicaleksa/YugoGPT) | **57.79** | **34.73** | **49.89** | 69.45 | 64.56 | 28.20 | **72.03** | 15.82 | **36.14** | 47.62 |
Here, all benchmarks were done 0-shot, on the exception of NQ Open and TriviaQA which were done in 5-shot manner, in order to be comparable to Mistral paper.
Evalutaions on Open LLM Leaderboard (or rather, performance and knowledge of English):
| | ARC | Hellaswag | Winogrande | MMLU | GSM8k | ThruthfulQA | Avg. |
|---------|-------|-----------|------------|------|-------|-------------|-------|
| Tito-7B | 68.08 | 86.37 | 81.69 |64.01 | 63.61 | 57.01 | 70.13 |
| YugoGPT | 58.10 | 81.44 | 76.56 |60.68 | 30.70 | 36.60 | 57.34 |
Here, Winogrande, GSM8k, MMLU were done in 5-shot manner, Hellaswag in 10-shot manner, and finally ARC in 25-shot manner.
If we try to replicate these approaches on available Serbian datasets (running an appropriate amount of shots instead of 0), we get:
| | ARC | Hellaswag | Winogrande | Avg. |
|---------|-------|-----------|------------|-------|
| Tito-7B | 47.27 | - | 69.93 | - |
| YugoGPT | 44.03 | - | 70.64 | - |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Stopwolf__Tito-7B-slerp)
| Metric |Value|
|---------------------------------|----:|
|Avg. |70.13|
|AI2 Reasoning Challenge (25-Shot)|68.09|
|HellaSwag (10-Shot) |86.38|
|MMLU (5-Shot) |64.01|
|TruthfulQA (0-shot) |57.01|
|Winogrande (5-shot) |81.69|
|GSM8k (5-shot) |63.61|