gpt2-model-de / README.md
Tanhim's picture
Update README.md
5177423
---
language: de
widget:
- text: Hallo, ich bin ein Sprachmodell
license: gpl
---
<h2> GPT2 Model for German Language </h2>
Model Name: Tanhim/gpt2-model-de <br />
language: German or Deutsch <br />
thumbnail: https://huggingface.co/Tanhim/gpt2-model-de <br />
datasets: Ten Thousand German News Articles Dataset <br />
### How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, I
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generation= pipeline('text-generation', model='Tanhim/gpt2-model-de', tokenizer='Tanhim/gpt2-model-de')
>>> set_seed(42)
>>> generation("Hallo, ich bin ein Sprachmodell,", max_length=30, num_return_sequences=5)
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("Tanhim/gpt2-model-de")
model = AutoModelWithLMHead.from_pretrained("Tanhim/gpt2-model-de")
text = "Ersetzen Sie mich durch einen beliebigen Text, den Sie wünschen."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
Citation request:
If you use the model of this repository in your research, please consider citing the following way:
```python
@misc{GermanTransformer,
author = {Tanhim Islam},
title = {{PyTorch Based Transformer Machine Learning Model for German Text Generation Task}},
howpublished = "\url{https://huggingface.co/Tanhim/gpt2-model-de}",
year = {2021},
note = "[Online; accessed 17-June-2021]"
}
```