|
|
|
--- |
|
tags: |
|
- bertopic |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# china-only-mar11 |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("Thang203/china-only-mar11") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 20 |
|
* Number of training documents: 847 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| -1 | language - llms - models - data - large | 21 | -1_language_llms_models_data | |
|
| 0 | visual - image - multimodal - models - language | 205 | 0_visual_image_multimodal_models | |
|
| 1 | embodied - driving - navigation - robot - robotic | 142 | 1_embodied_driving_navigation_robot | |
|
| 2 | recommendation - user - recommendations - systems - behavior | 16 | 2_recommendation_user_recommendations_systems | |
|
| 3 | agents - social - bots - interactions - ai agents | 16 | 3_agents_social_bots_interactions | |
|
| 4 | rl - reinforcement learning - reinforcement - learning - policy | 15 | 4_rl_reinforcement learning_reinforcement_learning | |
|
| 5 | molecular - design - property - prediction - gnns | 17 | 5_molecular_design_property_prediction | |
|
| 6 | code - code generation - generation - software - programming | 11 | 6_code_code generation_generation_software | |
|
| 7 | medical - knowledge - medical knowledge - llms - language | 73 | 7_medical_knowledge_medical knowledge_llms | |
|
| 8 | extraction - information extraction - event - information - relation | 16 | 8_extraction_information extraction_event_information | |
|
| 9 | safety - llms - robustness - instructions - assurance | 15 | 9_safety_llms_robustness_instructions | |
|
| 10 | reasoning - prompting - cot - llms - chainofthought | 14 | 10_reasoning_prompting_cot_llms | |
|
| 11 | knowledge - language - knowledge graph - web - kg | 52 | 11_knowledge_language_knowledge graph_web | |
|
| 12 | question - answering - commonsense - question answering - knowledge | 17 | 12_question_answering_commonsense_question answering | |
|
| 13 | models - language - model - training - language models | 18 | 13_models_language_model_training | |
|
| 14 | dialogue - dialog - models - responses - model | 104 | 14_dialogue_dialog_models_responses | |
|
| 15 | detection - fake - news - detectors - texts | 31 | 15_detection_fake_news_detectors | |
|
| 16 | chatgpt - sentiment - evaluation - sentiment analysis - human | 16 | 16_chatgpt_sentiment_evaluation_sentiment analysis | |
|
| 17 | chinese - evaluation - models - language - language models | 22 | 17_chinese_evaluation_models_language | |
|
| 18 | translation - arabic - languages - language - models | 26 | 18_translation_arabic_languages_language | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: False |
|
* language: english |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: 20 |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: True |
|
* zeroshot_min_similarity: 0.7 |
|
* zeroshot_topic_list: None |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.25.2 |
|
* HDBSCAN: 0.8.33 |
|
* UMAP: 0.5.5 |
|
* Pandas: 1.5.3 |
|
* Scikit-Learn: 1.2.2 |
|
* Sentence-transformers: 2.6.1 |
|
* Transformers: 4.38.2 |
|
* Numba: 0.58.1 |
|
* Plotly: 5.15.0 |
|
* Python: 3.10.12 |
|
|