ppo-LunarLander-v2 / README.md
VinayHajare's picture
Updated the usage code
a3287ec
|
raw
history blame
1.74 kB
metadata
library_name: stable-baselines3
tags:
  - LunarLander-v2
  - deep-reinforcement-learning
  - reinforcement-learning
  - stable-baselines3
model-index:
  - name: PPO
    results:
      - task:
          type: reinforcement-learning
          name: reinforcement-learning
        dataset:
          name: LunarLander-v2
          type: LunarLander-v2
        metrics:
          - type: mean_reward
            value: 263.26 +/- 19.25
            name: mean_reward
            verified: false

PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

# Usage code
import gymnasium as gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor

repo_id = "VinayHajare/ppo-LunarLander-v2"
filename = "ppo-LunarLander-v2.zip"
eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint,env=eval_env,print_system_info=True)

#eval_env = DummyVecEnv([lambda: Monitor(gym.make("LunarLander-v2", render_mode="rgb_array"))])
mean_reward, std_reward = evaluate_policy(model,eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

# Enjoy trained agent
vec_env = model.get_env()
obs = vec_env.reset()
for _ in range(1000):
    action, _states = model.predict(obs, deterministic=True)
    obs, rewards, dones, info = vec_env.step(action)
    vec_env.render("human")