metadata
license: other
tags:
- generated_from_keras_callback
model-index:
- name: Xanadu00/galaxy_classifier_mobilevit_2
results: []
Xanadu00/galaxy_classifier_mobilevit_2
This model is a fine-tuned version of apple/mobilevit-small on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1727
- Train Accuracy: 0.9423
- Validation Loss: 0.4766
- Validation Accuracy: 0.8565
- Epoch: 17
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.002, 'decay_steps': 10000, 'decay_rate': 0.01, 'staircase': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.9904 | 0.6535 | 0.7897 | 0.7269 | 0 |
0.6759 | 0.7662 | 0.5772 | 0.8030 | 1 |
0.5845 | 0.7979 | 0.5967 | 0.8010 | 2 |
0.5166 | 0.8232 | 0.5613 | 0.8030 | 3 |
0.4819 | 0.8330 | 0.5049 | 0.8253 | 4 |
0.4432 | 0.8516 | 0.5894 | 0.7993 | 5 |
0.4113 | 0.8580 | 0.4722 | 0.8354 | 6 |
0.3802 | 0.8704 | 0.4730 | 0.8444 | 7 |
0.3529 | 0.8750 | 0.4391 | 0.8543 | 8 |
0.3255 | 0.8836 | 0.4380 | 0.8563 | 9 |
0.3053 | 0.8953 | 0.4468 | 0.8532 | 10 |
0.2821 | 0.9027 | 0.5082 | 0.8368 | 11 |
0.2690 | 0.9071 | 0.4380 | 0.8588 | 12 |
0.2460 | 0.9132 | 0.4668 | 0.8540 | 13 |
0.2184 | 0.9247 | 0.4684 | 0.8557 | 14 |
0.2017 | 0.9273 | 0.4880 | 0.8546 | 15 |
0.1930 | 0.9311 | 0.4934 | 0.8582 | 16 |
0.1727 | 0.9423 | 0.4766 | 0.8565 | 17 |
Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3