|
--- |
|
license: other |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Xanadu00/galaxy_classifier_mobilevit_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Xanadu00/galaxy_classifier_mobilevit_2 |
|
|
|
This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1727 |
|
- Train Accuracy: 0.9423 |
|
- Validation Loss: 0.4766 |
|
- Validation Accuracy: 0.8565 |
|
- Epoch: 17 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.002, 'decay_steps': 10000, 'decay_rate': 0.01, 'staircase': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.9904 | 0.6535 | 0.7897 | 0.7269 | 0 | |
|
| 0.6759 | 0.7662 | 0.5772 | 0.8030 | 1 | |
|
| 0.5845 | 0.7979 | 0.5967 | 0.8010 | 2 | |
|
| 0.5166 | 0.8232 | 0.5613 | 0.8030 | 3 | |
|
| 0.4819 | 0.8330 | 0.5049 | 0.8253 | 4 | |
|
| 0.4432 | 0.8516 | 0.5894 | 0.7993 | 5 | |
|
| 0.4113 | 0.8580 | 0.4722 | 0.8354 | 6 | |
|
| 0.3802 | 0.8704 | 0.4730 | 0.8444 | 7 | |
|
| 0.3529 | 0.8750 | 0.4391 | 0.8543 | 8 | |
|
| 0.3255 | 0.8836 | 0.4380 | 0.8563 | 9 | |
|
| 0.3053 | 0.8953 | 0.4468 | 0.8532 | 10 | |
|
| 0.2821 | 0.9027 | 0.5082 | 0.8368 | 11 | |
|
| 0.2690 | 0.9071 | 0.4380 | 0.8588 | 12 | |
|
| 0.2460 | 0.9132 | 0.4668 | 0.8540 | 13 | |
|
| 0.2184 | 0.9247 | 0.4684 | 0.8557 | 14 | |
|
| 0.2017 | 0.9273 | 0.4880 | 0.8546 | 15 | |
|
| 0.1930 | 0.9311 | 0.4934 | 0.8582 | 16 | |
|
| 0.1727 | 0.9423 | 0.4766 | 0.8565 | 17 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- TensorFlow 2.12.0 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|