clipseg-rd64 / README.md
Xenova's picture
Xenova HF staff
Update README.md
9ab1b1d
|
raw
history blame
2.93 kB
---
library_name: transformers.js
tags:
- vision
- image-segmentation
---
https://huggingface.co/CIDAS/clipseg-rd64 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Perform zero-shot image segmentation with a `CLIPSegForImageSegmentation` model.
```js
import { AutoTokenizer, AutoProcessor, CLIPSegForImageSegmentation, RawImage } from '@xenova/transformers';
// Load tokenizer, processor, and model
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clipseg-rd64');
const processor = await AutoProcessor.from_pretrained('Xenova/clipseg-rd64');
const model = await CLIPSegForImageSegmentation.from_pretrained('Xenova/clipseg-rd64');
// Run tokenization
const texts = ['a glass', 'something to fill', 'wood', 'a jar'];
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
// Read image and run processor
const image = await RawImage.read('https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true');
const image_inputs = await processor(image);
// Run model with both text and pixel inputs
const { logits } = await model({ ...text_inputs, ...image_inputs });
// logits: Tensor {
// dims: [4, 352, 352],
// type: 'float32',
// data: Float32Array(495616)[ ... ],
// size: 495616
// }
```
You can visualize the predictions as follows:
```js
// Visualize images
const preds = logits
.unsqueeze_(1)
.sigmoid_()
.mul_(255)
.round_()
.to('uint8');
for (let i = 0; i < preds.dims[0]; ++i) {
const img = RawImage.fromTensor(preds[i]);
img.save(`prediction_${i}.png`);
}
```
| Original | `"a glass"` | `"something to fill"` | `"wood"` | `"a jar"` |
|--------|--------|--------|--------|--------|
| ![image](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/B4wAIseP3SokRd7Flu1Y9.png) | ![prediction_0](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/5NhLTZH2jM8k98n62dWRx.png) | ![prediction_1](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9PjQB8QRE8IUN1OhEK30q.png) | ![prediction_2](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/mAuKCId-iwMbKPi6ee3Zk.png) | ![prediction_3](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/m0HP13L2lzalLsbXtrmbc.png) |
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).