|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Helsinki-NLP/opus-mt-tc-bible-big-mul-mul |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: en_to_dzo_helsinki_nlp_m2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# en_to_dzo_helsinki_nlp_m2 |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-bible-big-mul-mul](https://huggingface.co/Helsinki-NLP/opus-mt-tc-bible-big-mul-mul) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3012 |
|
- Bleu: 2.8367 |
|
- Gen Len: 119.2242 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 9 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 0.8419 | 1.0 | 562 | 0.5239 | 0.0 | 121.8458 | |
|
| 0.5144 | 2.0 | 1124 | 0.4316 | 1.0161 | 118.9429 | |
|
| 0.4296 | 3.0 | 1686 | 0.3774 | 0.8574 | 118.6066 | |
|
| 0.3759 | 4.0 | 2248 | 0.3462 | 1.4119 | 118.6577 | |
|
| 0.3351 | 5.0 | 2810 | 0.3250 | 2.0178 | 119.8008 | |
|
| 0.3065 | 6.0 | 3372 | 0.3123 | 2.5655 | 118.7538 | |
|
| 0.2839 | 7.0 | 3934 | 0.3037 | 3.0749 | 118.5455 | |
|
| 0.2665 | 8.0 | 4496 | 0.3023 | 2.9584 | 119.3423 | |
|
| 0.2441 | 9.0 | 5058 | 0.3012 | 2.8367 | 119.2242 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.20.3 |
|
|