msi-resnet-18 / README.md
aaa12963337's picture
End of training
da1e5ae
metadata
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: msi-resnet-18
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6336664802907465
          - name: F1
            type: f1
            value: 0.5299313932110667
          - name: Precision
            type: precision
            value: 0.5977139389034999
          - name: Recall
            type: recall
            value: 0.4759565042287555

msi-resnet-18

This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6854
  • Accuracy: 0.6337
  • F1: 0.5299
  • Precision: 0.5977
  • Recall: 0.4760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.499 1.0 2015 0.7028 0.6189 0.4730 0.5911 0.3942
0.4738 2.0 4031 0.7003 0.6268 0.4981 0.5979 0.4268
0.4788 3.0 6047 0.7195 0.6148 0.4517 0.5906 0.3657
0.4523 4.0 8060 0.6854 0.6337 0.5299 0.5977 0.4760

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0