|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: msi-vit-small |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.599979032708974 |
|
- name: F1 |
|
type: f1 |
|
value: 0.2863021385373153 |
|
- name: Precision |
|
type: precision |
|
value: 0.6335540838852097 |
|
- name: Recall |
|
type: recall |
|
value: 0.18493757551349174 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# msi-vit-small |
|
|
|
This model was trained from scratch on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5796 |
|
- Accuracy: 0.6000 |
|
- F1: 0.2863 |
|
- Precision: 0.6336 |
|
- Recall: 0.1849 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.3142 | 1.0 | 1008 | 0.8965 | 0.6329 | 0.5060 | 0.6079 | 0.4333 | |
|
| 0.2063 | 2.0 | 2016 | 1.5189 | 0.6062 | 0.3005 | 0.6550 | 0.1950 | |
|
| 0.19 | 3.0 | 3024 | 1.4818 | 0.6270 | 0.3399 | 0.7318 | 0.2213 | |
|
| 0.1718 | 4.0 | 4032 | 1.2353 | 0.6046 | 0.4096 | 0.5816 | 0.3161 | |
|
| 0.161 | 5.0 | 5040 | 1.5953 | 0.6342 | 0.3508 | 0.7623 | 0.2278 | |
|
| 0.1805 | 6.0 | 6048 | 1.0789 | 0.6552 | 0.4647 | 0.7119 | 0.3449 | |
|
| 0.1619 | 7.0 | 7056 | 1.2646 | 0.5479 | 0.2591 | 0.4484 | 0.1822 | |
|
| 0.1655 | 8.0 | 8064 | 1.7155 | 0.5910 | 0.2654 | 0.6011 | 0.1703 | |
|
| 0.17 | 9.0 | 9072 | 2.1142 | 0.5797 | 0.1729 | 0.5913 | 0.1012 | |
|
| 0.1703 | 10.0 | 10080 | 1.5796 | 0.6000 | 0.2863 | 0.6336 | 0.1849 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|