|
--- |
|
license: apache-2.0 |
|
base_model: projecte-aina/roberta-base-ca-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: FS_27_06 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FS_27_06 |
|
|
|
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1744 |
|
- Accuracy: 0.966 |
|
- Precision: 0.9668 |
|
- Recall: 0.966 |
|
- F1: 0.9660 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.6727 | 1.0 | 375 | 1.5301 | 0.93 | 0.9351 | 0.9300 | 0.9300 | |
|
| 0.2375 | 2.0 | 750 | 0.2548 | 0.958 | 0.9622 | 0.958 | 0.9583 | |
|
| 0.1424 | 3.0 | 1125 | 0.1922 | 0.96 | 0.9612 | 0.9600 | 0.9599 | |
|
| 0.0197 | 4.0 | 1500 | 0.1789 | 0.966 | 0.9670 | 0.966 | 0.9660 | |
|
| 0.0171 | 5.0 | 1875 | 0.1744 | 0.966 | 0.9668 | 0.966 | 0.9660 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|